RESUMEN
Human cerebral organoids derived from induced pluripotent stem cells can recapture early developmental processes and reveal changes involving neurodevelopmental disorders. Mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene are associated with Rett syndrome, and disease severity varies depending on the location and type of mutation. Here, we focused on neuronal activity in Rett syndrome patient-derived organoids, analyzing two types of MeCP2 mutations - a missense mutation (R306C) and a truncating mutation (V247X) - using calcium imaging with three-photon microscopy. Compared to isogenic controls, we found abnormal neuronal activity in Rett organoids and altered network function based on graph theoretic analyses, with V247X mutations impacting functional responses and connectivity more severely than R306C mutations. These changes paralleled EEG data obtained from patients with comparable mutations. Labeling DLX promoter-driven inhibitory neurons demonstrated differences in activity and functional connectivity of inhibitory and excitatory neurons in the two types of mutation. Transcriptomic analyses revealed HDAC2-associated impairment in R306C organoids and decreased GABAA receptor expression in excitatory neurons in V247X organoids. These findings demonstrate mutation-specific mechanisms of vulnerability in Rett syndrome and suggest targeted strategies for their treatment.
RESUMEN
Functional and structural connectivity alterations in short- and long-range projections have been reported across neurodevelopmental disorders (NDD). Interhemispheric callosal projection neurons (CPN) represent one of the major long-range projections in the brain, which are particularly important for higher-order cognitive function and flexibility. However, whether a causal relationship exists between interhemispheric connectivity alterations and cognitive deficits in NDD remains elusive. Here, we focused on CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder caused by mutations in the X-linked Cyclin-dependent kinase-like 5 (CDKL5) gene. We found an increase in homotopic interhemispheric connectivity and functional hyperconnectivity across higher cognitive areas in adult male and female CDKL5-deficient mice by resting-state functional MRI (rs-fMRI) analysis. This was accompanied by an increase in the number of callosal synaptic inputs but decrease in local synaptic connectivity in the cingulate cortex of juvenile CDKL5-deficient mice, suggesting an impairment in excitatory synapse development and a differential role of CDKL5 across excitatory neuron subtypes. These deficits were associated with significant cognitive impairments in CDKL5 KO mice. Selective deletion of CDKL5 in the largest subtype of CPN likewise resulted in an increase of functional callosal inputs, without however significantly altering intracortical cingulate networks. Notably, such callosal-specific changes were sufficient to cause cognitive deficits. Finally, when CDKL5 was selectively re-expressed only in this CPN subtype, in otherwise CDKL5-deficient mice, it was sufficient to prevent the cognitive impairments of CDKL5 mutants. Together, these results reveal a novel role of CDKL5 by demonstrating that it is both necessary and sufficient for proper CPN connectivity and cognitive function and flexibility, and further validates a causal relationship between CPN dysfunction and cognitive impairment in a model of NDD.
RESUMEN
CDKL5 Deficiency Disorder (CDD) is a severe encephalopathy characterized by intractable epilepsy, infantile spasms, and cognitive disabilities. The detrimental CNS manifestations and lack of therapeutic interventions represent unmet needs, necessitating identification of CDD-dependent phenotypes for in vitro disease modeling and therapeutic testing. Here, we optimized a high-content assay to quantify cilia in CDKL5-deficient neurons. Our work shows that Cdkl5-knockdown neurons have elongated cilia and uncovers cilium lengthening in hippocampi of Cdkl5 knockout mice. Collectively, our findings identify cilia length alterations under CDKL5 activity loss in vitro and in vivo and reveal elongated cilia as a robust functional phenotype for CDD.
Asunto(s)
Síndromes Epilépticos , Proteínas Serina-Treonina Quinasas , Animales , Cilios , Síndromes Epilépticos/genética , Ratones , Neuronas , Fenotipo , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
Spontaneous pupil size fluctuations in humans and mouse models are noninvasively measured data that can be used for early detection of neurodevelopmental spectrum disorders. While highly valuable in such applied studies, pupillometry dynamics and dynamical characteristics have not been fully investigated, although their understanding may potentially lead to the discovery of new information, which cannot be readily uncovered by conventional methods. Properties of pupillometry dynamics, such as determinism, were previously investigated for healthy human subjects; however, the dynamical characteristics of pupillometry data in mouse models, and whether they are similar to those of human subjects, remain largely unknown. Therefore, it is necessary to establish a thorough understanding of the dynamical properties of mouse pupillometry dynamics and to clarify whether it is similar to that of humans. In this study, dynamical pupillometry characteristics from 115 wild-type mouse datasets were investigated by methods of nonlinear time series analysis. Results clearly demonstrated a strong underlying determinism in the investigated data. Additionally, the data's trajectory divergence rate and predictability were estimated.
Asunto(s)
Pupila , Animales , Voluntarios Sanos , Humanos , RatonesRESUMEN
Female animals in biomedical research have traditionally been excluded from research studies due to the perceived added complexity caused by the estrus cycle. However, given the importance of sex differences in a variety of neurological disorders, testing female mice is critical to identifying sex-linked effects in diseases. To determine the susceptibility of simple behaviors to hormonal fluctuations in the estrus cycle, we studied the effects of sex and the estrus cycle on a variety of behavioral tasks commonly used in mouse phenotyping laboratories. Male and female C57BL/6J mice were tested in a small battery of short duration tests and, immediately on completion of each test, females were classified using cytology of vaginal lavages as sexually-receptive (proestrus and estrus) or non-receptive (NR; metestrus and diestrus). We showed that there was a significant difference in 3-chamber social interaction (SI) between female mice at different stages of their estrus cycle, with sexually-receptive mice showing no preferential interest in a novel female mouse compared with an empty chamber. NR female mice showed the same level of preference for a novel female mouse as male mice did for a novel male mouse. No differences between or within sexes were found for tests of anxiety elevated plus maze (EPM; Hole board), working memory [Novel object recognition (NOR)], and motor learning (repeated tests on rotarod). We conclude that the stage of the estrus cycle may impact SI between same-sex conspecifics, and does not impact performance in the elevated plus-maze, hole board, NOR, and rotarod.
RESUMEN
Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.
Asunto(s)
Proteína 2 de Unión a Metil-CpG , Síndrome de Rett , Proteínas Portadoras , Niño , Discapacidades del Desarrollo , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación , Reproducibilidad de los Resultados , Síndrome de Rett/genéticaRESUMEN
Neurodevelopmental spectrum disorders like autism (ASD) are diagnosed, on average, beyond age 4 y, after multiple critical periods of brain development close and behavioral intervention becomes less effective. This raises the urgent need for quantitative, noninvasive, and translational biomarkers for their early detection and tracking. We found that both idiopathic (BTBR) and genetic (CDKL5- and MeCP2-deficient) mouse models of ASD display an early, impaired cholinergic neuromodulation as reflected in altered spontaneous pupil fluctuations. Abnormalities were already present before the onset of symptoms and were rescued by the selective expression of MeCP2 in cholinergic circuits. Hence, we trained a neural network (ConvNetACh) to recognize, with 97% accuracy, patterns of these arousal fluctuations in mice with enhanced cholinergic sensitivity (LYNX1-deficient). ConvNetACh then successfully detected impairments in all ASD mouse models tested except in MeCP2-rescued mice. By retraining only the last layers of ConvNetACh with heart rate variation data (a similar proxy of arousal) directly from Rett syndrome patients, we generated ConvNetPatients, a neural network capable of distinguishing them from typically developing subjects. Even with small cohorts of rare patients, our approach exhibited significant accuracy before (80% in the first and second year of life) and into regression (88% in stage III patients). Thus, transfer learning across species and modalities establishes spontaneous arousal fluctuations combined with deep learning as a robust noninvasive, quantitative, and sensitive translational biomarker for the rapid and early detection of neurodevelopmental disorders before major symptom onset.
Asunto(s)
Acetilcolina/metabolismo , Nivel de Alerta , Trastorno Autístico/psicología , Aprendizaje Profundo , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Pupila/fisiología , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatología , Síndrome de Rett/psicologíaRESUMEN
Methyl-CpG-binding protein 2 (MeCP2) mutations are the primary cause of Rett syndrome, a severe neurodevelopmental disorder. Cortical parvalbumin GABAergic interneurons (PV) make exuberant somatic connections onto pyramidal cells in the visual cortex of Mecp2-deficient mice, which contributes to silencing neuronal cortical circuits. This phenotype can be rescued independently of Mecp2 by environmental, pharmacological, and genetic manipulation. It remains unknown how Mecp2 mutation can result in abnormal inhibitory circuit refinement. In the present manuscript, we examined the development of GABAergic circuits in the primary visual cortex of Mecp2-deficient mice. We identified that PV circuits were the only GABAergic interneurons to be upregulated, while other interneurons were downregulated. Acceleration of PV cell maturation was accompanied by increased PV cells engulfment by perineuronal nets (PNNs) and by an increase of PV cellular and PNN structural complexity. Interestingly, selective deletion of Mecp2 from PV cells was sufficient to drive increased structure complexity of PNN. Moreover, the accelerated PV and PNN maturation was recapitulated in organotypic cultures. Our results identify a specific timeline of disruption of GABAergic circuits in the absence of Mecp2, indicating a possible cell-autonomous role of MeCP2 in the formation of PV cellular arbors and PNN structures in the visual cortex.
Asunto(s)
Neuronas GABAérgicas/fisiología , Proteína 2 de Unión a Metil-CpG/fisiología , Parvalbúminas/fisiología , Corteza Visual/crecimiento & desarrollo , Animales , Neuronas GABAérgicas/citología , Interneuronas/citología , Interneuronas/fisiología , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/citología , Vías Nerviosas/crecimiento & desarrollo , Corteza Visual/citologíaRESUMEN
Intellectual and developmental disabilities (IDDs) are a common group of disorders that frequently share overlapping symptoms, including cognitive deficits, altered attention, seizures, impaired social interactions, and anxiety. The causes of these disorders are varied ranging from early prenatal/postnatal insults to genetic variants that either cause or are associated with an increased likelihood of an IDD. As many of the symptoms observed in individuals with IDDs are a manifestation of altered nervous system function resulting in altered behaviors, it should not be surprising that the field is very dependent upon in vivo model systems. This special issue of Neurobiology of Learning and Memory is focused on the methods and approaches that are being used to model and understand these disorders in mammals. While surveys by the Pew Foundation continue to find a high degree of confidence/trust in scientists by the public, several recent studies have documented issues with reproducibility in scientific publications. This special issue includes both primary research articles and review articles in which careful attention has been made to transparently report methods and use rigorous approaches to ensure reproducibility. Although there have been and will continue to be remarkable advances for treatment of subset of IDDs, it is clear that this field is still in its early stages. There is no doubt that the strategies being used to model IDDs will continue to evolve. We hope this special issue will support this evolution so that we can maintain the trust of the public and elected officials, and continue developing evidence-based approaches to new therapeutics.
Asunto(s)
Discapacidades del Desarrollo/psicología , Modelos Animales de Enfermedad , Discapacidad Intelectual/psicología , Animales , Discapacidades del Desarrollo/etiología , Humanos , Discapacidad Intelectual/etiologíaRESUMEN
Complex adult behaviors arise from the integration of sequential and often overlapping critical periods (CPs) early in life and adolescence. These processes rely on a subtle interplay between the set of genes inherited from the parents, the surrounding environment and epigenetic regulation. Methyl-CpG-binding protein 2 (MeCP2) has been shown to recognize epigenetic states and regulate gene expression by reading methylated DNA. Here, we will review the recent findings revealing the role of MeCP2 during postnatal CPs of development using mouse models of Rett (RTT) syndrome.
Asunto(s)
Síndrome de Rett , Animales , Epigénesis Genética , Humanos , Proteína 2 de Unión a Metil-CpG , RatonesRESUMEN
Polyunsaturated fatty acids serve multiple functions in neurodevelopment and neurocognitive function. Intravenous lipid emulsions are administered to children that are dependent on parenteral nutrition to provide the essential fatty acids needed to sustain growth and development. One of these emulsions, derived from fish-oil, is particularly poor in the traditional essential fatty acids, linoleic and alpha-linolenic acids. However, it does contain adequate amounts of its main derivatives, arachidonic acid (ARA) and docosahexaenoic acid (DHA), respectively. This skewed composition has raised concern about the sole use of fish-oil based lipid emulsions in children and how its administration can be detrimental to their neurodevelopment. Using a custom-made diet that contains ARA and DHA as a sole source of polyunsaturated fatty acids, we bred and fed mice for multiple generations. Compared to adult, chow-fed mice, animals maintained on this special diet showed similar outcomes in a battery of neurocognitive tests performed under controlled conditions. Chow-fed mice did perform better in the rotarod test for ataxia and balance, although both experimental groups showed a conserved motor learning capacity. Conversely, mice fed the custom diet rich in DHA and ARA showed less neophobia than the chow-fed animals. Results from these experiments suggest that providing a diet where ARA and DHA are the sole source of polyunsaturated fatty acids is sufficient to support gross visual, cognitive, motor, and social development in mice.
RESUMEN
Ketamine has emerged as a widespread treatment for a variety of psychiatric disorders when used at sub-anesthetic doses, but the neural mechanisms underlying its acute action remain unclear. Here, we identified NMDA receptors containing the 2A subunit (GluN2A) on parvalbumin (PV)-expressing inhibitory interneurons as a pivotal target of low-dose ketamine. Genetically deleting GluN2A receptors globally or selectively from PV interneurons abolished the rapid enhancement of visual cortical responses and gamma-band oscillations by ketamine. Moreover, during the follicular phase of the estrous cycle in female mice, the ketamine response was transiently attenuated along with a concomitant decrease of grin2A mRNA expression within PV interneurons. Thus, GluN2A receptors on PV interneurons mediate the immediate actions of low-dose ketamine treatment, and fluctuations in receptor expression across the estrous cycle may underlie sex-differences in drug efficacy.
Asunto(s)
Ketamina/metabolismo , Ketamina/farmacología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Ciclo Estral/efectos de los fármacos , Femenino , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/metabolismo , Parvalbúminas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Factores SexualesRESUMEN
Behavioral neuroscience research incorporates the identical high level of meticulous methodologies and exacting attention to detail as all other scientific disciplines. To achieve maximal rigor and reproducibility of findings, well-trained investigators employ a variety of established best practices. Here we explicate some of the requirements for rigorous experimental design and accurate data analysis in conducting mouse and rat behavioral tests. Novel object recognition is used as an example of a cognitive assay which has been conducted successfully with a range of methods, all based on common principles of appropriate procedures, controls, and statistics. Directors of Rodent Core facilities within Intellectual and Developmental Disabilities Research Centers contribute key aspects of their own novel object recognition protocols, offering insights into essential similarities and less-critical differences. Literature cited in this review article will lead the interested reader to source papers that provide step-by-step protocols which illustrate optimized methods for many standard rodent behavioral assays. Adhering to best practices in behavioral neuroscience will enhance the value of animal models for the multiple goals of understanding biological mechanisms, evaluating consequences of genetic mutations, and discovering efficacious therapeutics.
Asunto(s)
Investigación Conductal/métodos , Ratones/psicología , Ratas/psicología , Animales , Investigación Conductal/normas , Reproducibilidad de los Resultados , Proyectos de InvestigaciónRESUMEN
Accurately mapping neuronal activity across brain networks is critical to understand behaviors, yet it is very challenging due to the need of tools with both high spatial and temporal resolutions. Here, penetrating arrays of flexible microelectrodes made of low-impedance nanomeshes are presented, which are capable of recording single-unit electrophysiological neuronal activity and at the same time, transparent, allowing to bridge electrical and optical brain mapping modalities. These 32 transparent penetrating electrodes with site area, 225 µm2 , have a low impedance of ≈149 kΩ at 1 kHz, an adequate charge injection limit of ≈0.76 mC cm-2 , and up to 100% yield. Mechanical bending tests reveal that the array is robust up to 1000 bending cycles, and its high transmittance of 67% at 550 nm makes it suitable for combining with various optical methods. A temporary stiffening using polyethylene glycol allows the penetrating nanomesh arrays to be inserted into the brain minimally invasively, with in vivo validation of recordings of spontaneous and evoked single-unit activity of neurons across layers of the mouse visual cortex. Together, these results establish a novel neurotechnology-transparent, flexible, penetrating microelectrode arrays-which possesses great potential for brain research.
Asunto(s)
Electrodos Implantados , Electrofisiología/instrumentación , Microelectrodos , Animales , Diseño de Equipo , Ensayo de Materiales , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Docilidad , Corteza Visual/fisiologíaRESUMEN
Transparent microelectrode arrays have emerged as increasingly important tools for neuroscience by allowing simultaneous coupling of big and time-resolved electrophysiology data with optically measured, spatially and type resolved single neuron activity. Scaling down transparent electrodes to the length scale of a single neuron is challenging since conventional transparent conductors are limited by their capacitive electrode/electrolyte interface. In this study, we establish transparent microelectrode arrays with high performance, great biocompatibility, and comprehensive in vivo validations from a recently developed, bilayer-nanomesh material composite, where a metal layer and a low-impedance faradaic interfacial layer are stacked reliably together in a same transparent nanomesh pattern. Specifically, flexible arrays from 32 bilayer-nanomesh microelectrodes demonstrated near-unity yield with high uniformity, excellent biocompatibility, and great compatibility with state-of-the-art wireless recording and real-time artifact rejection system. The electrodes are highly scalable, with 130 kilohms at 1 kHz at 20 µm in diameter, comparable to the performance of microelectrodes in nontransparent Michigan arrays. The highly transparent, bilayer-nanomesh microelectrode arrays allowed in vivo two-photon imaging of single neurons in layer 2/3 of the visual cortex of awake mice, along with high-fidelity, simultaneous electrical recordings of visual-evoked activity, both in the multi-unit activity band and at lower frequencies by measuring the visual-evoked potential in the time domain. Together, these advances reveal the great potential of transparent arrays from bilayer-nanomesh microelectrodes for a broad range of utility in neuroscience and medical practices.
Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Electrofisiología/instrumentación , Microelectrodos , Nanoestructuras/química , Animales , Calcio/análisis , Espectroscopía Dieléctrica/instrumentación , Espectroscopía Dieléctrica/métodos , Electrodos Implantados , Electrofisiología/métodos , Oro/química , Masculino , Ratones Endogámicos C57BL , Imagen Molecular , Estimulación Luminosa , Fotones , Poliestirenos/química , Tiofenos/química , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología , Tecnología InalámbricaRESUMEN
Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymkinsT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits.
Asunto(s)
Proteínas de la Membrana/genética , Síndrome de Mobius/genética , Morfogénesis/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Mutación , Mioblastos/metabolismo , Síndrome de Pierre Robin/genética , Proteínas de Pez Cebra/genética , Adulto , Secuencia de Aminoácidos , Animales , Fusión Celular , Niño , Modelos Animales de Enfermedad , Embrión no Mamífero , Femenino , Expresión Génica , Genes Recesivos , Prueba de Complementación Genética , Humanos , Lactante , Masculino , Proteínas de la Membrana/deficiencia , Síndrome de Mobius/metabolismo , Síndrome de Mobius/patología , Proteínas Musculares/deficiencia , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mioblastos/patología , Linaje , Síndrome de Pierre Robin/metabolismo , Síndrome de Pierre Robin/patología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Pez Cebra , Proteínas de Pez Cebra/deficienciaRESUMEN
According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent plasticity. In contrast, we now show that feedback from cortex to thalamus critically regulates refinement of the retinogeniculate projection during a discrete window in development, beginning at postnatal day 20 in mice. Disrupting cortical activity during this window, pharmacologically or chemogenetically, increases the number of retinal ganglion cells innervating each thalamic relay neuron. These results suggest that primary sensory structures develop through the concurrent and interdependent remodeling of subcortical and cortical circuits in response to sensory experience, rather than through a simple feedforward process. Our findings also highlight an unexpected function for the corticothalamic projection.
Asunto(s)
Retroalimentación Fisiológica/fisiología , Cuerpos Geniculados/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Período Crítico Psicológico , Cuerpos Geniculados/efectos de los fármacos , Ratones , Muscimol/farmacología , Células Ganglionares de la Retina/fisiología , Corteza Visual/efectos de los fármacos , Vías Visuales/efectos de los fármacos , Vías Visuales/crecimiento & desarrolloRESUMEN
GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.
Asunto(s)
Subunidades de Proteína/metabolismo , Pirazinas/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Sulfonamidas/farmacología , Animales , Región CA1 Hipocampal/citología , Calcio/metabolismo , Células Cultivadas , Perros , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Ácido Glutámico/metabolismo , Glicina/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Células de Riñón Canino Madin Darby , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oocitos/metabolismo , Pirazinas/química , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Relación Estructura-Actividad , Sulfonamidas/química , XenopusRESUMEN
Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury.