Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Biol Psychiatry Glob Open Sci ; 4(6): 100370, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39309212

RESUMEN

Many psychiatric conditions have their roots in early development. Individual differences in prenatal brain function (which is influenced by a combination of genetic risk and the prenatal environment) likely interact with individual differences in postnatal experience, resulting in substantial variation in brain functional organization and development in infancy. Neuroimaging has been a powerful tool for understanding typical and atypical brain function and holds promise for uncovering the neurodevelopmental basis of psychiatric illness; however, its clinical utility has been relatively limited thus far. A substantial challenge in this endeavor is the traditional approach of averaging brain data across groups despite individuals varying in their brain organization, which likely obscures important clinically relevant individual variation. Precision functional mapping (PFM) is a neuroimaging technique that allows the capture of individual-specific and highly reliable functional brain properties. Here, we discuss how PFM, through its focus on individuals, has provided novel insights for understanding brain organization across the life span and its promise in elucidating the neural basis of psychiatric disorders. We first summarize the extant literature on PFM in normative populations, followed by its limited utilization in studying psychiatric conditions in adults. We conclude by discussing the potential for infant PFM in advancing developmental precision psychiatry applications, given that many psychiatric disorders start during early infancy and are associated with changes in individual-specific functional neuroanatomy. By exploring the intersection of PFM, development, and psychiatric research, this article underscores the importance of individualized approaches in unraveling the complexities of brain function and improving clinical outcomes across development.


Precision functional mapping (PFM) is a neuroimaging technique that allows researchers to capture properties of brain function and organization that are specific to individuals. Here, we discuss how PFM, through its focus on individual patterns of brain activity, has provided novel insights for understanding brain organization across the life span and its promise in helping to uncover relationships between brain function and psychiatric illness beginning at birth. By exploring the intersection of PFM, development, and psychiatric research, this article underscores the importance of individualized approaches in uncovering the complexities of brain function and improving clinical outcomes across development.

2.
Psychiatry Res Neuroimaging ; 344: 111877, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232266

RESUMEN

Many psychopathologies tied to internalizing symptomatology emerge during adolescence, therefore identifying neural markers of internalizing behavior in childhood may allow for early intervention. We utilized data from the Adolescent Brain and Cognitive Development (ABCD) Study® to evaluate associations between cortico-amygdalar functional connectivity, polygenic risk for depression (PRSD), traumatic events experienced, internalizing behavior, and internalizing subscales: withdrawn/depressed behavior, somatic complaints, and anxious/depressed behaviors. Data from 6371 children (ages 9-11) were used to analyze amygdala resting-state fMRI connectivity to Gordon parcellation based whole-brain regions of interest (ROIs). Internalizing behaviors were measured using the parent-reported Child Behavior Checklist. Linear mixed-effects models were used to identify patterns of cortico-amygdalar connectivity associated with internalizing behaviors. Results indicated left amygdala connections to auditory, frontoparietal network (FPN), and dorsal attention network (DAN) ROIs were significantly associated with withdrawn/depressed symptomatology. Connections relevant for withdrawn/depressed behavior were linked to social behaviors. Specifically, amygdala connections to DAN were associated with social anxiety, social impairment, and social problems. Additionally, an amygdala connection to the FPN ROI and the auditory network ROI was associated with social anxiety and social problems, respectively. Therefore, it may be important to account for social behaviors when looking for brain correlates of depression.


Asunto(s)
Amígdala del Cerebelo , Depresión , Imagen por Resonancia Magnética , Humanos , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Niño , Masculino , Femenino , Depresión/diagnóstico por imagen , Depresión/fisiopatología , Depresión/psicología , Adolescente , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/crecimiento & desarrollo
3.
bioRxiv ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39314355

RESUMEN

The cerebral cortex comprises discrete cortical areas that form during development. Accurate area parcellation in neuroimaging studies enhances statistical power and comparability across studies. The formation of cortical areas is influenced by intrinsic embryonic patterning as well as extrinsic inputs, particularly through postnatal exposure. Given the substantial changes in brain volume, microstructure, and functional connectivity during the first years of life, we hypothesized that cortical areas in 1-to-3-year-olds would exhibit major differences from those in neonates and progressively resemble adults as development progresses. Here, we parcellated the cerebral cortex into putative areas using local functional connectivity gradients in 92 toddlers at 2 years old. We demonstrated high reproducibility of these cortical regions across 1-to-3-year-olds in two independent datasets. The area boundaries in 1-to-3-year-olds were more similar to adults than neonates. While the age-specific group parcellation fitted better to the underlying functional connectivity in individuals during the first 3 years, adult area parcellations might still have some utility in developmental studies, especially in children older than 6 years. Additionally, we provided connectivity-based community assignments of the parcels, showing fragmented anterior and posterior components based on the strongest connectivity, yet alignment with adult systems when weaker connectivity was included.

4.
bioRxiv ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39314460

RESUMEN

Recent work has shown that deep learning is a powerful tool for predicting brain activation patterns evoked through various tasks using resting state features. We replicate and improve upon this recent work to introduce two models, BrainSERF and BrainSurfGCN, that perform at least as well as the state-of-the-art while greatly reducing memory and computational footprints. Our performance analysis observed that low predictability was associated with a possible lack of task engagement derived from behavioral performance. Furthermore, a deficiency in model performance was also observed for closely matched task contrasts, likely due to high individual variability confirmed by low test-retest reliability. Overall, we successfully replicate recently developed deep learning architecture and provide scalable models for further research.

5.
Nat Hum Behav ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103610

RESUMEN

When fields lack consensus standard methods and accessible ground truths, reproducibility can be more of an ideal than a reality. Such has been the case for functional neuroimaging, where there exists a sprawling space of tools and processing pipelines. We provide a critical evaluation of the impact of differences across five independently developed minimal preprocessing pipelines for functional magnetic resonance imaging. We show that, even when handling identical data, interpipeline agreement was only moderate, critically shedding light on a factor that limits cross-study reproducibility. We show that low interpipeline agreement can go unrecognized until the reliability of the underlying data is high, which is increasingly the case as the field progresses. Crucially we show that, when interpipeline agreement is compromised, so too is the consistency of insights from brain-wide association studies. We highlight the importance of comparing analytic configurations, because both widely discussed and commonly overlooked decisions can lead to marked variation.

7.
Nature ; 632(8023): 131-138, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39020167

RESUMEN

A single dose of psilocybin, a psychedelic that acutely causes distortions of space-time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials1-4. In animal models, psilocybin induces neuroplasticity in cortex and hippocampus5-8. It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics. Here we tracked individual-specific brain changes with longitudinal precision functional mapping (roughly 18 magnetic resonance imaging visits per participant). Healthy adults were tracked before, during and for 3 weeks after high-dose psilocybin (25 mg) and methylphenidate (40 mg), and brought back for an additional psilocybin dose 6-12 months later. Psilocybin massively disrupted functional connectivity (FC) in cortex and subcortex, acutely causing more than threefold greater change than methylphenidate. These FC changes were driven by brain desynchronization across spatial scales (areal, global), which dissolved network distinctions by reducing correlations within and anticorrelations between networks. Psilocybin-driven FC changes were strongest in the default mode network, which is connected to the anterior hippocampus and is thought to create our sense of space, time and self. Individual differences in FC changes were strongly linked to the subjective psychedelic experience. Performing a perceptual task reduced psilocybin-driven FC changes. Psilocybin caused persistent decrease in FC between the anterior hippocampus and default mode network, lasting for weeks. Persistent reduction of hippocampal-default mode network connectivity may represent a neuroanatomical and mechanistic correlate of the proplasticity and therapeutic effects of psychedelics.


Asunto(s)
Encéfalo , Alucinógenos , Red Nerviosa , Psilocibina , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Mapeo Encefálico , Red en Modo Predeterminado/citología , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/efectos de los fármacos , Red en Modo Predeterminado/fisiología , Alucinógenos/farmacología , Alucinógenos/administración & dosificación , Voluntarios Sanos , Hipocampo/citología , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Imagen por Resonancia Magnética , Metilfenidato/farmacología , Metilfenidato/administración & dosificación , Red Nerviosa/citología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Psilocibina/farmacología , Psilocibina/administración & dosificación , Percepción Espacial/efectos de los fármacos , Percepción del Tiempo/efectos de los fármacos , Ego
8.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979302

RESUMEN

Population neuroscience datasets allow researchers to estimate reliable effect sizes for brain-behavior associations because of their large sample sizes. However, these datasets undergo strict quality control to mitigate sources of noise, such as head motion. This practice often excludes a disproportionate number of minoritized individuals. We employ motion-ordering and motion-ordering+resampling (bagging) to test if these methods preserve functional MRI (fMRI) data in the Adolescent Brain Cognitive Development Study ( N = 5,733 ). Black and Hispanic youth exhibited excess head motion relative to data collected from White youth, and were discarded disproportionately when using conventional approaches. Both methods retained more than 99% of Black and Hispanic youth. They produced reproducible brain-behavior associations across low-/high-motion racial/ethnic groups based on motion-limited fMRI data. The motion-ordering and bagging methods are two feasible approaches that can enhance sample representation for testing brain-behavior associations and fulfill the promise of consortia datasets to produce generalizable effect sizes across diverse populations.

9.
J Law Biosci ; 11(1): lsae008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855036

RESUMEN

Researchers are rapidly developing and deploying highly portable MRI technology to conduct field-based research. The new technology will widen access to include new investigators in remote and unconventional settings and will facilitate greater inclusion of rural, economically disadvantaged, and historically underrepresented populations. To address the ethical, legal, and societal issues raised by highly accessible and portable MRI, an interdisciplinary Working Group (WG) engaged in a multi-year structured process of analysis and consensus building, informed by empirical research on the perspectives of experts and the general public. This article presents the WG's consensus recommendations. These recommendations address technology quality control, design and oversight of research, including safety of research participants and others in the scanning environment, engagement of diverse participants, therapeutic misconception, use of artificial intelligence algorithms to acquire and analyze MRI data, data privacy and security, return of results and managing incidental findings, and research participant data access and control.

10.
Dev Cogn Neurosci ; 68: 101400, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870601

RESUMEN

BACKGROUND: There is an imminent need to identify neural markers during preadolescence that are linked to developing depression during adolescence, especially among youth at elevated familial risk. However, longitudinal studies remain scarce and exhibit mixed findings. Here we aimed to elucidate functional connectivity (FC) patterns among preadolescents that interact with familial depression risk to predict depression two years later. METHODS: 9-10 year-olds in the Adolescent Brain Cognitive Development (ABCD) Study were classified as healthy (i.e., no lifetime psychiatric diagnoses) at high familial risk for depression (HR; n=559) or at low familial risk for psychopathology (LR; n=1203). Whole-brain seed-to-voxel resting-state FC patterns with the amygdala, putamen, nucleus accumbens, and caudate were calculated. Multi-level, mixed-effects regression analyses were conducted to test whether FC at ages 9-10 interacted with familial risk to predict depression symptoms at ages 11-12. RESULTS: HR youth demonstrated stronger associations between preadolescent FC and adolescent depression symptoms (ps<0.001) as compared to LR youth (ps>0.001), primarily among amygdala/striatal FC with visual and sensory/somatomotor networks. CONCLUSIONS: Preadolescent amygdala and striatal FC may be useful biomarkers of adolescent-onset depression, particularly for youth with family histories of depression. This research may point to neurobiologically-informed approaches to prevention and intervention for depression in adolescents.


Asunto(s)
Encéfalo , Depresión , Imagen por Resonancia Magnética , Humanos , Niño , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Depresión/psicología , Adolescente , Estudios Longitudinales , Predisposición Genética a la Enfermedad , Vías Nerviosas , Amígdala del Cerebelo
11.
J Cogn Neurosci ; : 1-19, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38739568

RESUMEN

Socially guided visual attention, such as gaze following and joint attention, represents the building block of higher-level social cognition in primates, although their neurodevelopmental processes are still poorly understood. Atypical development of these social skills has served as early marker of autism spectrum disorder and Williams syndrome. In this study, we trace the developmental trajectories of four neural networks underlying visual and attentional social engagement in the translational rhesus monkey model. Resting-state fMRI (rs-fMRI) data and gaze following skills were collected in infant rhesus macaques from birth through 6 months of age. Developmental trajectories from subjects with both resting-state fMRI and eye-tracking data were used to explore brain-behavior relationships. Our findings indicate robust increases in functional connectivity (FC) between primary visual areas (primary visual cortex [V1] - extrastriate area 3 [V3] and V3 - middle temporal area, ventral motion areas middle temporal area - AST, as well as between TE and amygdala (AMY) as infants mature. Significant FC decreases were found in more rostral areas of the pathways, such as areas temporal area occipital part - TE in the ventral object pathway, V3 - lateral intraparietal (LIP) of the dorsal visual attention pathway and V3 - temporo-parietal area of the ventral attention pathway. No changes in FC were found between cortical areas LIP-FEF and temporo-parietal area - Area 12 of the dorsal and ventral attention pathways or between AST-AMY and AMY-insula. Developmental trajectory of gaze following revealed a period of dynamic changes with gradual increases from 1 to 2 months, followed by slight decreases from 3 to 6 months. Exploratory association findings across the 6-month period showed that infants with higher gaze following had lower FC between primary visual areas V1-V3, but higher FC in the dorsal attention areas V3-LIP, both in the right hemisphere. Together, the first 6 months of life in rhesus macaques represent a critical period for the emergence of gaze following skills associated with maturational changes in FC of socially guided attention pathways.

12.
Biol Psychiatry Glob Open Sci ; 4(3): 100309, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690260

RESUMEN

Background: Fear overgeneralization is a promising pathogenic mechanism of clinical anxiety. A dominant model posits that hippocampal pattern separation failures drive overgeneralization. Hippocampal network-targeted transcranial magnetic stimulation (HNT-TMS) has been shown to strengthen hippocampal-dependent learning/memory processes. However, no study has examined whether HNT-TMS can alter fear learning/memory. Methods: Continuous theta burst stimulation was delivered to individualized left posterior parietal stimulation sites derived via seed-based connectivity, precision functional mapping, and electric field modeling methods. A vertex control site was also stimulated in a within-participant, randomized controlled design. Continuous theta burst stimulation was delivered prior to 2 visual discrimination tasks (1 fear based, 1 neutral). Multilevel models were used to model and test data. Participants were undergraduates with posttraumatic stress symptoms (final n = 25). Results: Main analyses did not indicate that HNT-TMS strengthened discrimination. However, multilevel interaction analyses revealed that HNT-TMS strengthened fear discrimination in participants with lower fear sensitization (indexed by responses to a control stimulus with no similarity to the conditioned fear cue) across multiple indices (anxiety ratings: ß = 0.10, 95% CI, 0.04 to 0.17, p = .001; risk ratings: ß = 0.07, 95% CI, 0.00 to 0.13, p = .037). Conclusions: Overgeneralization is an associative process that reflects deficient discrimination of the fear cue from similar cues. In contrast, sensitization reflects nonassociative responding unrelated to fear cue similarity. Our results suggest that HNT-TMS may selectively sharpen fear discrimination when associative response patterns, which putatively implicate the hippocampus, are more strongly engaged.


Fear overgeneralization is a promising pathogenic mechanism of clinical anxiety that is thought to be driven by deficient hippocampal discrimination. Using hippocampal network­targeted transcranial magnetic stimulation (HNT-TMS) in healthy participants with symptoms of posttraumatic stress, Webler et al. report that HNT-TMS did not strengthen discrimination overall, but it did strengthen fear discrimination in participants with lower fear sensitization. Sensitization reflects nonassociative fear responding unrelated to fear cue similarity and therefore is not expected to engage the hippocampal discrimination function. These results suggest that HNT-TMS may selectively sharpen fear discrimination when the hippocampal discrimination function is more strongly engaged.

13.
Dev Cogn Neurosci ; 66: 101370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583301

RESUMEN

Childhood environments are critical in shaping cognitive neurodevelopment. With the increasing availability of large-scale neuroimaging datasets with deep phenotyping of childhood environments, we can now build upon prior studies that have considered relationships between one or a handful of environmental and neuroimaging features at a time. Here, we characterize the combined effects of hundreds of inter-connected and co-occurring features of a child's environment ("exposome") and investigate associations with each child's unique, multidimensional pattern of functional brain network organization ("functional topography") and cognition. We apply data-driven computational models to measure the exposome and define personalized functional brain networks in pre-registered analyses. Across matched discovery (n=5139, 48.5% female) and replication (n=5137, 47.1% female) samples from the Adolescent Brain Cognitive Development study, the exposome was associated with current (ages 9-10) and future (ages 11-12) cognition. Changes in the exposome were also associated with changes in cognition after accounting for baseline scores. Cross-validated ridge regressions revealed that the exposome is reflected in functional topography and can predict performance across cognitive domains. Importantly, a single measure capturing a child's exposome could more accurately and parsimoniously predict cognition than a wealth of personalized neuroimaging data, highlighting the importance of children's complex, multidimensional environments in cognitive neurodevelopment.

14.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664387

RESUMEN

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Corteza Sensoriomotora , Humanos , Adolescente , Femenino , Masculino , Adulto Joven , Niño , Corteza Sensoriomotora/fisiología , Corteza Sensoriomotora/diagnóstico por imagen , Preescolar , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo
15.
J Autism Dev Disord ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607474

RESUMEN

PURPOSE: Diagnostic accuracy of autism spectrum disorder (ASD) is crucial to track and characterize ASD, as well as to guide appropriate interventions at the individual level. However, under-diagnosis, over-diagnosis, and misdiagnosis of ASD are still prevalent. METHODS: We describe 232 children (MAge = 10.71 years; 19% female) with community-based diagnoses of ASD referred for research participation. Extensive assessment procedures were employed to confirm ASD diagnosis before study inclusion. The sample was subsequently divided into two groups with either confirmed ASD diagnoses (ASD+) or unconfirmed/inaccurate diagnoses (ASD-). Clinical characteristics differentiating the groups were further analyzed. RESULTS: 47% of children with community-based ASD diagnoses did not meet ASD criteria by expert consensus. ASD + and ASD- groups did not differ in age, gender, ethnicity, or racial make-up. The ASD + group was more likely to have a history of early language delays compared to the ASD- group; however, no group differences in current functional language use were reported by caregivers. The ASD + group scored significantly higher on ADI-R scores and on the ADOS-2 algorithm composite scores and calibrated severity scores (CSSs). The ASD- group attained higher estimated IQ scores and higher rates of psychiatric disorders, including anxiety disorder, disruptive behavior, and mood disorder diagnoses. Broadly, caregiver questionnaires (SRS-2, CCC-2) did not differentiate groups. CONCLUSION: Increased reported psychiatric disorders in the ASD- group suggests psychiatric complexity may contribute to community misdiagnosis and possible overdiagnosis of ASD. Clinician-mediated tools (ADI-R, ADOS-2) differentiated ASD + versus ASD- groups, whereas caregiver-reported questionnaires did not.

16.
Hum Brain Mapp ; 45(5): e26580, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520359

RESUMEN

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n = 20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Sustancia Blanca , Humanos , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Autopsia , Algoritmos
17.
Nat Neurosci ; 27(5): 1000-1013, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532024

RESUMEN

Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adolescente , Masculino , Femenino , Adulto , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Atlas como Asunto , Niño , Probabilidad , Vías Nerviosas/fisiología
18.
Biol Psychiatry ; 96(6): 486-494, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460580

RESUMEN

BACKGROUND: Symptoms of borderline personality disorder (BPD) often manifest during adolescence, but the underlying relationship between these debilitating symptoms and the development of functional brain networks is not well understood. Here, we aimed to investigate how multivariate patterns of functional connectivity are associated with borderline personality traits in large samples of young adults and adolescents. METHODS: We used functional magnetic resonance imaging data from young adults and adolescents from the HCP-YA (Human Connectome Project Young Adult) (n = 870, ages 22-37 years, 457 female) and the HCP-D (Human Connectome Project Development) (n = 223, ages 16-21 years, 121 female). A previously validated BPD proxy score was derived from the NEO Five-Factor Inventory. A ridge regression model with cross-validation and nested hyperparameter tuning was trained and tested in HCP-YA to predict BPD scores in unseen data from regional functional connectivity. The trained model was further tested on data from HCP-D without further tuning. Finally, we tested how the connectivity patterns associated with BPD aligned with age-related changes in connectivity. RESULTS: Multivariate functional connectivity patterns significantly predicted out-of-sample BPD scores in unseen data in young adults (HCP-YA ppermuted = .001) and older adolescents (HCP-D ppermuted = .001). Regional predictive capacity was heterogeneous; the most predictive regions were found in functional systems relevant for emotion regulation and executive function, including the ventral attention network. Finally, regional functional connectivity patterns that predicted BPD scores aligned with those associated with development in youth. CONCLUSIONS: Individual differences in functional connectivity in developmentally sensitive regions are associated with borderline personality traits.


Asunto(s)
Trastorno de Personalidad Limítrofe , Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Trastorno de Personalidad Limítrofe/fisiopatología , Trastorno de Personalidad Limítrofe/diagnóstico por imagen , Femenino , Adulto Joven , Adulto , Masculino , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología
20.
Dev Cogn Neurosci ; 66: 101355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354531

RESUMEN

Prior research suggests that the organization of the language network in the brain is left-dominant and becomes more lateralized with age and increasing language skill. The age at which specific components of the language network become adult-like varies depending on the abilities they subserve. So far, a large, developmental study has not included a language task paradigm, so we introduce a method to study resting-state laterality in the Adolescent Brain Cognitive Development (ABCD) study. Our approach mixes source timeseries between left and right homotopes of the (1) inferior frontal and (2) middle temporal gyri and (3) a region we term "Wernicke's area" near the supramarginal gyrus. Our large subset sample size of ABCD (n = 6153) allows improved reliability and validity compared to previous, smaller studies of brain-behavior associations. We show that behavioral metrics from the NIH Youth Toolbox and other resources are differentially related to tasks with a larger linguistic component over ones with less (e.g., executive function-dominant tasks). These baseline characteristics of hemispheric specialization in youth are critical for future work determining the correspondence of lateralization with language onset in earlier stages of development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...