Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4617, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816363

RESUMEN

The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of a viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectrometry. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.


Asunto(s)
Intrones , Empalme del ARN , Empalmosomas , Humanos , Intrones/genética , Empalmosomas/metabolismo , Células HEK293 , ARN Nucleotidiltransferasas/metabolismo , ARN Nucleotidiltransferasas/genética , Exones/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células HeLa , Sitios de Empalme de ARN
2.
Genome Biol ; 25(1): 33, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38268025

RESUMEN

BACKGROUND: The removal of introns occurs through the splicing of a 5' splice site (5'ss) with a 3' splice site (3'ss). These two elements are recognized by distinct components of the spliceosome. However, introns in higher eukaryotes contain many matches to the 5' and 3' splice-site motifs that are presumed not to be used. RESULTS: Here, we find that many of these sites can be used. We also find occurrences of the AGGT motif that can function as either a 5'ss or a 3'ss-previously referred to as dual-specific splice sites (DSSs)-within introns. Analysis of the Sequence Read Archive reveals a 3.1-fold enrichment of DSSs relative to expectation, implying synergy between the ability to function as a 5'ss and 3'ss. Despite this suggested mechanistic advantage, DSSs are 2.7- and 4.7-fold underrepresented in annotated 5' and 3' splice sites. A curious exception is the polyubiquitin gene UBC, which contains a tandem array of DSSs that precisely delimit the boundary of each ubiquitin monomer. The resulting isoforms splice stochastically to include a variable number of ubiquitin monomers. We found no evidence of tissue-specific or feedback regulation but note the 8.4-fold enrichment of DSS-spliced introns in tandem repeat genes suggests a driving role in the evolution of genes like UBC. CONCLUSIONS: We find an excess of unannotated splice sites and the utilization of DSSs in tandem repeats supports the role of splicing in gene evolution. These findings enhance our understanding of the diverse and complex nature of the splicing process.


Asunto(s)
Poliubiquitina , Empalme del ARN , Poliubiquitina/genética , Intrones , Sitios de Empalme de ARN , Archivos
3.
Res Sq ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398028

RESUMEN

The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of the first viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectroscopy. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.

4.
J Biol Chem ; 299(9): 105100, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507019

RESUMEN

In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , ARN Nucleotidiltransferasas , Humanos , Intrones , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Empalme del ARN , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Activación Enzimática/genética , Dominios Proteicos , Unión Proteica , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Entamoeba histolytica/enzimología , Entamoeba histolytica/genética , Metales Pesados/metabolismo
5.
Mol Cell ; 83(13): 2258-2275.e11, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37369199

RESUMEN

The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.


Asunto(s)
Síndromes de Tricotiodistrofia , Animales , Ratones , Intrones/genética , Síndromes de Tricotiodistrofia/genética , ARN Nucleotidiltransferasas/genética , Empalme del ARN
6.
Proc Natl Acad Sci U S A ; 120(21): e2218308120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192163

RESUMEN

Humans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations. Of the 5,169 alleles tested in this massively parallel splicing reporter assay (MaPSy), we report 962 exonic splicing mutations that correspond to differences in exon recognition between extant and extinct hominins. Using MaPSy splicing variants, predicted splicing variants, and splicing quantitative trait loci, we show that splice-disrupting variants experienced greater purifying selection in anatomically modern humans than that in Neanderthals. Adaptively introgressed variants were enriched for moderate-effect splicing variants, consistent with positive selection for alternative spliced alleles following introgression. As particularly compelling examples, we characterized a unique tissue-specific alternative splicing variant at the adaptively introgressed innate immunity gene TLR1, as well as a unique Neanderthal introgressed alternative splicing variant in the gene HSPG2 that encodes perlecan. We further identified potentially pathogenic splicing variants found only in Neanderthals and Denisovans in genes related to sperm maturation and immunity. Finally, we found splicing variants that may contribute to variation among modern humans in total bilirubin, balding, hemoglobin levels, and lung capacity. Our findings provide unique insights into natural selection acting on splicing in human evolution and demonstrate how functional assays can be used to identify candidate causal variants underlying differences in gene regulation and phenotype.


Asunto(s)
Hominidae , Hombre de Neandertal , Masculino , Animales , Humanos , Hombre de Neandertal/genética , Semen , Hominidae/genética , Alelos , Regulación de la Expresión Génica , Genoma Humano
7.
Biochemistry ; 61(24): 2933-2939, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36484984

RESUMEN

The RNA lariat debranching enzyme is the sole enzyme responsible for hydrolyzing the 2'-5' phosphodiester bond in RNA lariats produced by the spliceosome. Here, we test the ability of Dbr1 to hydrolyze branched RNAs (bRNAs) that contain a 2'-5'-phosphorothioate linkage, a modification commonly used to resist degradation. We attempted to cocrystallize a phosphorothioate-branched RNA (PS-bRNA) with wild-type Entamoeba histolytica Dbr1 (EhDbr1) but observed in-crystal hydrolysis of the phosphorothioate bond. The crystal structure revealed EhDbr1 in a product-bound state, with the hydrolyzed 2'-5' fragment of the PS-bRNA mimicking the binding mode of the native bRNA substrate. These findings suggest that product inhibition may contribute to the kinetic mechanism of Dbr1. We show that Dbr1 enzymes cleave phosphorothioate linkages at rates ∼10,000-fold more slowly than native phosphate linkages. This new product-bound crystal structure offers atomic details, which can aid inhibitor design. Dbr1 inhibitors could be therapeutic or investigative compounds for human diseases such as human immunodeficiency virus (HIV), amyotrophic lateral sclerosis (ALS), cancer, and viral encephalitis.


Asunto(s)
ARN Nucleotidiltransferasas , ARN , Humanos , ARN/química , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Empalme del ARN , Fosfatos/metabolismo
8.
Sci Rep ; 12(1): 15755, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130991

RESUMEN

COVID-19 has impacted millions of patients across the world. Molecular testing occurring now identifies the presence of the virus at the sampling site: nasopharynx, nares, or oral cavity. RNA sequencing has the potential to establish both the presence of the virus and define the host's response in COVID-19. Single center, prospective study of patients with COVID-19 admitted to the intensive care unit where deep RNA sequencing (> 100 million reads) of peripheral blood with computational biology analysis was done. All patients had positive SARS-CoV-2 PCR. Clinical data was prospectively collected. We enrolled fifteen patients at a single hospital. Patients were critically ill with a mortality of 47% and 67% were on a ventilator. All the patients had the SARS-CoV-2 RNA identified in the blood in addition to RNA from other viruses, bacteria, and archaea. The expression of many immune modulating genes, including PD-L1 and PD-L2, were significantly different in patients who died from COVID-19. Some proteins were influenced by alternative transcription and splicing events, as seen in HLA-C, HLA-E, NRP1 and NRP2. Entropy calculated from alternative RNA splicing and transcription start/end predicted mortality in these patients. Current upper respiratory tract testing for COVID-19 only determines if the virus is present. Deep RNA sequencing with appropriate computational biology may provide important prognostic information and point to therapeutic foci to be precisely targeted in future studies.


Asunto(s)
COVID-19 , Antígeno B7-H1/genética , Prueba de COVID-19 , Antígenos HLA-C/genética , Humanos , Unidades de Cuidados Intensivos , Estudios Prospectivos , ARN Viral/genética , SARS-CoV-2/genética , Análisis de Secuencia de ARN
9.
RNA ; 28(7): 927-936, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35459748

RESUMEN

In eukaryotic cells, intron lariats produced by the spliceosome contain a 2'5' phosphodiester linkage. The RNA lariat debranching enzyme, Dbr1, is the only enzyme known to hydrolyze this bond. Dbr1 is a member of the metallophosphoesterase (MPE) family of enzymes, and recent X-ray crystal structures and biochemistry data demonstrate that Dbr1 from Entamoeba histolytica uses combinations of Mn2+, Zn2+, and Fe2+ as enzymatic cofactors. Here, we examine the kinetic properties and metal dependence of the Dbr1 homolog from Saccharomyces cerevisiae (yDbr1). Elemental analysis measured stoichiometric quantities of Fe and Zn in yDbr1 purified following heterologous expression E. coli We analyzed the ability of Fe2+, Zn2+, and Mn2+ to reconstitute activity in metal-free apoenzyme. Purified yDbr1 was highly active, turning over substrate at 5.6 sec-1, and apo-yDbr1 reconstituted with Fe2+ was the most active species, turning over at 9.2 sec-1 We treated human lymphoblastoid cells with the iron-chelator deferoxamine and measured a twofold increase in cellular lariats. These data suggest that Fe is an important biological cofactor for Dbr1 enzymes.


Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Intrones , Metales , ARN/química , ARN Nucleotidiltransferasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
PLoS Genet ; 18(1): e1009884, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35051175

RESUMEN

To determine the contribution of defective splicing in Autism Spectrum Disorders (ASD), the most common neurodevelopmental disorder, a high throughput Massively Parallel Splicing Assay (MaPSY) was employed and identified 42 exonic splicing mutants out of 725 coding de novo variants discovered in the sequencing of ASD families. A redesign of the minigene constructs in MaPSY revealed that upstream exons with strong 5' splice sites increase the magnitude of skipping phenotypes observed in downstream exons. Select hits were validated by RT-PCR and amplicon sequencing in patient cell lines. Exonic splicing mutants were enriched in probands relative to unaffected siblings -especially synonymous variants (7.5% vs 3.5%, respectively). Of the 26 genes disrupted by exonic splicing mutations, 6 were in known ASD genes and 3 were in paralogs of known ASD genes. Of particular interest was a synonymous variant in TNRC6C - an ASD gene paralog with interactions with other ASD genes. Clinical records of 3 ASD patients with TNRC6C variant revealed respiratory issues consistent with phenotypes observed in TNRC6 depleted mice. Overall, this study highlights the need for splicing analysis in determining variant pathogenicity, especially as it relates to ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Mutación , Empalme del ARN , Línea Celular , Exones , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Humanos , Linaje , Fenotipo , Proteínas de Unión al ARN , Mutación Silenciosa
11.
Front Mol Biosci ; 9: 1080964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589229

RESUMEN

Variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continue to cause disease and impair the effectiveness of treatments. The therapeutic potential of convergent neutralizing antibodies (NAbs) from fully recovered patients has been explored in several early stages of novel drugs. Here, we identified initially elicited NAbs (Ig Heavy, Ig lambda, Ig kappa) in response to COVID-19 infection in patients admitted to the intensive care unit at a single center with deep RNA sequencing (>100 million reads) of peripheral blood as a diagnostic tool for predicting the severity of the disease and as a means to pinpoint specific compensatory NAb treatments. Clinical data were prospectively collected at multiple time points during ICU admission, and amino acid sequences for the NAb CDR3 segments were identified. Patients who survived severe COVID-19 had significantly more of a Class 3 antibody (C135) to SARS-CoV-2 compared to non-survivors (15059.4 vs. 1412.7, p = 0.016). In addition to highlighting the utility of RNA sequencing in revealing unique NAb profiles in COVID-19 patients with different outcomes, we provided a physical basis for our findings via atomistic modeling combined with molecular dynamics simulations. We established the interactions of the Class 3 NAb C135 with the SARS-CoV-2 spike protein, proposing a mechanistic basis for inhibition via multiple conformations that can effectively prevent ACE2 from binding to the spike protein, despite C135 not directly blocking the ACE2 binding motif. Overall, we demonstrate that deep RNA sequencing combined with structural modeling offers the new potential to identify and understand novel therapeutic(s) NAbs in individuals lacking certain immune responses due to their poor endogenous production. Our results suggest a possible window of opportunity for administration of such NAbs when their full sequence becomes available. A method involving rapid deep RNA sequencing of patients infected with SARS-CoV-2 or its variants at the earliest infection time could help to develop personalized treatments using the identified specific NAbs.

12.
J Mol Diagn ; 23(12): 1661-1670, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34600137

RESUMEN

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is transmitted through airborne particles in exhaled breath, causing severe respiratory disease, coronavirus disease-2019 (COVID-19), in some patients. Samples for SARS-CoV-2 testing are typically collected by nasopharyngeal swab, with the virus detected by PCR; however, patients can test positive for 3 months after infection. Without the capacity to assay SARS-CoV-2 in breath, it is not possible to understand the risk for transmission from infected individuals. To detect virus in breath, the Bubbler-a breathalyzer that reverse-transcribes RNA from SARS-CoV-2 particles into a sample-specific barcoded cDNA-was developed. In a study of 70 hospitalized patients, the Bubbler was both more predictive of lower respiratory tract involvement (abnormal chest X-ray) and less invasive than alternatives. Samples tested using the Bubbler were threefold more enriched for SARS-CoV-2 RNA than were samples from tongue swabs, implying that virus particles were being directly sampled. The barcode-enabled Bubbler was used for simultaneous diagnosis in large batches of pooled samples at a lower limit of detection of 334 genomic copies per sample. Diagnosis by sequencing can provide additional information, such as viral load and strain identity. The Bubbler was configured to sample nucleic acids in water droplets circulating in air, demonstrating its potential in environmental monitoring and the protective effect of adequate ventilation.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Pruebas Diagnósticas de Rutina/métodos , Sistema Respiratorio/virología , SARS-CoV-2/genética , Líquidos Corporales/virología , COVID-19/virología , Humanos , ARN Viral/genética , Manejo de Especímenes , Carga Viral/métodos
13.
Genome Med ; 13(1): 147, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503567

RESUMEN

BACKGROUND: DNA sequencing is increasingly incorporated into the routine care of cancer patients, many of whom also carry inherited, moderate/high-penetrance variants associated with other diseases. Yet, the prevalence and consequence of such variants remain unclear. METHODS: We analyzed the germline genomes of 10,389 adult cancer cases in the TCGA cohort, identifying pathogenic/likely pathogenic variants in autosomal-dominant genes, autosomal-recessive genes, and 59 medically actionable genes curated by the American College of Molecular Genetics (i.e., the ACMG 59 genes). We also analyzed variant- and gene-level expression consequences in carriers. RESULTS: The affected genes exhibited varying pan-ancestry and population-specific patterns, and overall, the European population showed the highest frequency of pathogenic/likely pathogenic variants. We further identified genes showing expression consequence supporting variant functionality, including altered gene expression, allelic specific expression, and mis-splicing determined by a massively parallel splicing assay. CONCLUSIONS: Our results demonstrate that expression-altering variants are found in a substantial fraction of cases and illustrate the yield of genomic risk assessments for a wide range of diseases across diverse populations.


Asunto(s)
Células Germinativas , Neoplasias , Humanos , Alelos , Regulación Neoplásica de la Expresión Génica , Genómica , Heterocigoto , Patrón de Herencia , Neoplasias/genética , Medición de Riesgo , Análisis de Secuencia de ADN
14.
Nat Commun ; 12(1): 2756, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980843

RESUMEN

High-throughput splicing assays have demonstrated that many exonic variants can disrupt splicing; however, splice-disrupting variants distribute non-uniformly across genes. We propose the existence of exons that are particularly susceptible to splice-disrupting variants, which we refer to as hotspot exons. Hotspot exons are also more susceptible to splicing perturbation through drug treatment and knock-down of RNA-binding proteins. We develop a classifier for exonic splice-disrupting variants and use it to infer hotspot exons. We estimate that 1400 exons in the human genome are hotspots. Using panels of splicing reporters, we demonstrate how the ability of an exon to tolerate a mutation is inversely proportional to the strength of its neighboring splice sites.


Asunto(s)
Exones/genética , Variación Genética , Empalme del ARN/genética , Empalme Alternativo/genética , Sitios de Unión , Regulación de la Expresión Génica , Genoma Humano , Humanos , Mutación , Sitios de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
15.
medRxiv ; 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33469603

RESUMEN

PURPOSE: COVID-19 has impacted millions of patients across the world. Molecular testing occurring now identifies the presence of the virus at the sampling site: nasopharynx, nares, or oral cavity. RNA sequencing has the potential to establish both the presence of the virus and define the host's response in COVID-19. METHODS: Single center, prospective study of patients with COVID-19 admitted to the intensive care unit where deep RNA sequencing (>100 million reads) of peripheral blood with computational biology analysis was done. All patients had positive SARS-CoV-2 PCR. Clinical data was prospectively collected. RESULTS: We enrolled fifteen patients at a single hospital. Patients were critically ill with a mortality of 47% and 67% were on a ventilator. All the patients had the SARS-CoV-2 RNA identified in the blood in addition to RNA from other viruses, bacteria, and archaea. The expression of many immune modulating genes, including PD-L1 and PD-L2, were significantly different in patients who died from COVID-19. Some proteins were influenced by alternative transcription and splicing events, as seen in HLA-C, HLA-E, NRP1 and NRP2. Entropy calculated from alternative RNA splicing and transcription start/end predicted mortality in these patients. CONCLUSIONS: Current upper respiratory tract testing for COVID-19 only determines if the virus is present. Deep RNA sequencing with appropriate computational biology may provide important prognostic information and point to therapeutic foci to be precisely targeted in future studies. TAKE HOME MESSAGE: Deep RNA sequencing provides a novel diagnostic tool for critically ill patients. Among ICU patients with COVID-19, RNA sequencings can identify gene expression, pathogens (including SARS-CoV-2), and can predict mortality. TWEET: Deep RNA sequencing is a novel technology that can assist in the care of critically ill COVID-19 patients & can be applied to other disease.

16.
Nat Commun ; 11(1): 2845, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32504065

RESUMEN

Exonic splicing enhancers (ESEs) are enriched in exons relative to introns and bind splicing activators. This study considers a fundamental question of co-evolution: How did ESE motifs become enriched in exons prior to the evolution of ESE recognition? We hypothesize that the high exon to intron motif ratios necessary for ESE function were created by mutational bias coupled with purifying selection on the protein code. These two forces retain certain coding motifs in exons while passively depleting them from introns. Through the use of simulations, genomic analyses, and high throughput splicing assays, we confirm the key predictions of this hypothesis, including an overlap between protein and splicing information in ESEs. We discuss the implications of mutational bias as an evolutionary driver in other cis-regulatory systems.


Asunto(s)
Elementos de Facilitación Genéticos , Evolución Molecular , Exones/genética , Genoma Humano , Empalme del ARN , Simulación por Computador , Genómica , Ensayos Analíticos de Alto Rendimiento , Humanos , Intrones/genética , Modelos Genéticos , Mutación
18.
Biochim Biophys Acta Gene Regul Mech ; 1862(11-12): 194439, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31682938

RESUMEN

RNA splicing, the process through which intervening segments of noncoding RNA (introns) are excised from pre-mRNAs to allow for the formation of a mature mRNA product, has long been appreciated for its capacity to add complexity to eukaryotic proteomes. However, evidence suggests that the utility of this process extends beyond protein output and provides cells with a dynamic tool for gene regulation. In this review, we aim to highlight the role that intronic RNA plays in mediating specific splicing outcomes in pre-mRNA processing, as well as explore an emerging class of stable intronic sequences that have been observed to act in gene expression control. Building from underlying flexibility in both sequence and structure, intronic RNA provides mechanisms for post-transcriptional gene regulation that are amenable to the tissue and condition specific needs of eukaryotic cells. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.


Asunto(s)
Precursores del ARN/genética , ARN Mensajero/metabolismo , Empalme Alternativo , Animales , Regulación de la Expresión Génica , Humanos , Intrones , Precursores del ARN/química , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/química
19.
Hum Mutat ; 40(9): 1215-1224, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31301154

RESUMEN

Precision medicine and sequence-based clinical diagnostics seek to predict disease risk or to identify causative variants from sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. In the past, few CAGI challenges have addressed the impact of sequence variants on splicing. In CAGI5, two challenges (Vex-seq and MaPSY) involved prediction of the effect of variants, primarily single-nucleotide changes, on splicing. Although there are significant differences between these two challenges, both involved prediction of results from high-throughput exon inclusion assays. Here, we discuss the methods used to predict the impact of these variants on splicing, their performance, strengths, and weaknesses, and prospects for predicting the impact of sequence variation on splicing and disease phenotypes.


Asunto(s)
Empalme Alternativo , Biología Computacional/métodos , Mutación , Proteínas/genética , Animales , Congresos como Asunto , Aptitud Genética , Humanos , Modelos Genéticos , Homología de Secuencia de Ácido Nucleico
20.
Hum Mutat ; 40(9): 1225-1234, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31297895

RESUMEN

Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one-third of disease-causing mutations are thought to affect pre-mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large-scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high-throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue-specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high-throughput methods for variant interpretation.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Empalme del ARN , Humanos , Aprendizaje Automático , Medicina de Precisión , Precursores del ARN/genética , Análisis de Secuencia de ARN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...