Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neurooncol Adv ; 5(1): vdad120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885806

RESUMEN

Background: Branched-chain aminotransferase 1 (BCAT1) has been proposed to drive proliferation and invasion of isocitrate dehydrogenase (IDH) wild-type glioblastoma cells. However, the Cancer Genome Atlas (TCGA) dataset shows considerable variation in the expression of this enzyme in glioblastoma. The aim of this study was to determine the role of BCAT1 in driving the proliferation and invasion of glioblastoma cells and xenografts that have widely differing levels of BCAT1 expression and the mechanism responsible. Methods: The activity of BCAT1 was modulated in IDH wild-type patient-derived glioblastoma cell lines, and in orthotopically implanted tumors derived from these cells, to examine the effects of BCAT1 expression on tumor phenotype. Results: In cells with constitutively high BCAT1 expression and a glycolytic metabolic phenotype, inducible shRNA knockdown of the enzyme resulted in reduced proliferation and invasion by increasing the concentration of α-ketoglutarate, leading to reduced DNA methylation, HIF-1α destabilization, and reduced expression of the transcription factor Forkhead box protein M1 (FOXM1). Conversely, overexpression of the enzyme increased HIF-1α expression and promoted proliferation and invasion. However, in cells with an oxidative phenotype and very low constitutive expression of BCAT1 increased expression of the enzyme had no effect on invasion and reduced cell proliferation. This occurred despite an increase in HIF-1α levels and could be explained by decreased TCA cycle flux. Conclusions: There is a wide variation in BCAT1 expression in glioblastoma and its role in proliferation and invasion is dependent on tumor subtype.

2.
Magn Reson Med ; 85(6): 3027-3035, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33421253

RESUMEN

PURPOSE: To compare carbon-13 (13 C) MRSI of hyperpolarized [1-13 C]pyruvate metabolism in a murine tumor model with mass spectrometric (MS) imaging of the corresponding tumor sections in order to cross validate these metabolic imaging techniques and to investigate the effects of pyruvate delivery and tumor lactate concentration on lactate labeling. METHODS: [1-13 C]lactate images were obtained from tumor-bearing mice, following injection of hyperpolarized [1-13 C]pyruvate, using a single-shot 3D 13 C spectroscopic imaging sequence in vivo and using desorption electrospray ionization MS imaging of the corresponding rapidly frozen tumor sections ex vivo. The images were coregistered, and levels of association were determined by means of Spearman rank correlation and Cohen kappa coefficients as well as linear mixed models. The correlation between [1-13 C]pyruvate and [1-13 C]lactate in the MRS images and between [12 C] and [1-13 C]lactate in the MS images were determined by means of Pearson correlation coefficients. RESULTS: [1-13 C]lactate images generated by MS imaging were significantly correlated with the corresponding MRS images. The correlation coefficient between [1-13 C]lactate and [1-13 C]pyruvate in the MRS images was higher than between [1-13 C]lactate and [12 C]lactate in the MS images. CONCLUSION: The inhomogeneous distribution of labeled lactate observed in the MRS images was confirmed by MS imaging of the corresponding tumor sections. The images acquired using both techniques show that the rate of 13 C label exchange between the injected pyruvate and endogenous tumor lactate pool is more correlated with the rate of pyruvate delivery to the tumor cells and is less affected by the endogenous lactate concentration.


Asunto(s)
Linfoma , Ácido Pirúvico , Animales , Isótopos de Carbono , Ácido Láctico , Linfoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Espectrometría de Masas , Ratones
3.
Magn Reson Med ; 84(4): 1895-1908, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32173908

RESUMEN

PURPOSE: Imaging tumor metabolism in vivo using hyperpolarized [1-13 C]pyruvate is a promising technique for detecting disease, monitoring disease progression, and assessing treatment response. However, the transient nature of the hyperpolarization and its depletion following excitation limits the available time for imaging. We describe here a single-shot multi spin echo sequence, which improves on previously reported sequences, with a shorter readout time, isotropic point spread function (PSF), and better signal-to-noise ratio. METHODS: The sequence uses numerically optimized spectrally selective excitation pulses set to the resonant frequencies of pyruvate and lactate and a hyperbolic secant adiabatic refocusing pulse, all applied in the absence of slice selection gradients. The excitation pulses were designed to be resistant to the effects of B0 and B1 field inhomogeneity. The gradient readout uses a 3D cone trajectory composed of 13 cones, all fully refocused and distributed among 7 spin echoes. The maximal gradient amplitude and slew rate were set to 4 G/cm and 20 G/cm/ms, respectively, to demonstrate the feasibility of clinical translation. RESULTS: The pulse sequence gave an isotropic PSF of 2.8 mm. The excitation profiles of the optimized pulses closely matched simulations and a 46.10 ± 0.04% gain in image SNR was observed compared to a conventional Shinnar-Le Roux excitation pulse. The sequence was demonstrated with dynamic imaging of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate in vivo. CONCLUSION: The pulse sequence was capable of dynamic imaging of hyperpolarized 13 C labeled metabolites in vivo with relatively high spatial and temporal resolution and immunity to system imperfections.


Asunto(s)
Algoritmos , Aumento de la Imagen , Imagen por Resonancia Magnética , Fantasmas de Imagen , Ácido Pirúvico , Relación Señal-Ruido
4.
Radiology ; 294(2): 289-296, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31821119

RESUMEN

Background Tumor cells frequently show high rates of aerobic glycolysis, which provides the glycolytic intermediates needed for the increased biosynthetic demands of rapid cell growth and proliferation. Existing clinical methods (fluorodeoxyglucose PET and carbon 13 MRI and spectroscopy) do not allow quantitative images of glycolytic flux. Purpose To evaluate the use of deuterium (hydrogen 2 [2H]) MR spectroscopic imaging for quantitative mapping of tumor glycolytic flux and to assess response to chemotherapy. Materials and Methods A fast three-dimensional 2H MR spectroscopic imaging pulse sequence, with a time resolution of 10 minutes, was used to image glycolytic flux in a murine tumor model after bolus injection of D-[6,6'-2H2]glucose before and 48 hours after treatment with a chemotherapeutic agent. Tumor lactate labeling, expressed as the lactate-to-water and lactate-to-glucose signal ratios, was also assessed in localized 2H MR spectra. Statistical significance was tested with a one-sided paired t test. Results 2H MR spectroscopic imaging showed heterogeneity in glycolytic flux across the tumor and an early decrease in flux following treatment with a chemotherapeutic drug. Spectroscopy measurements on five animals showed a decrease in the lactate-to-water signal ratio, from 0.33 ± 0.10 to 0.089 ± 0.039 (P = .005), and in the lactate-to-glucose ratio, from 0.27 ± 0.12 to 0.12 ± 0.06 (P = .04), following drug treatment. Conclusion Rapidly acquired deuterium (hydrogen 2) MR spectroscopic images can provide quantitative and spatially resolved measurements of glycolytic flux in tumors that can be used to assess treatment response. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Ouwerkerk in this issue.


Asunto(s)
Glucólisis , Imagenología Tridimensional/métodos , Linfoma/diagnóstico por imagen , Espectroscopía de Resonancia Magnética/métodos , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Deuterio , Modelos Animales de Enfermedad , Linfoma/tratamiento farmacológico , Ratones , Tiempo
5.
Cancer Res ; 79(14): 3557-3569, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31088837

RESUMEN

Metabolic imaging has been widely used to measure the early responses of tumors to treatment. Here, we assess the abilities of PET measurement of [18F]FDG uptake and MRI measurement of hyperpolarized [1-13C]pyruvate metabolism to detect early changes in glycolysis following treatment-induced cell death in human colorectal (Colo205) and breast adenocarcinoma (MDA-MB-231) xenografts in mice. A TRAIL agonist that binds to human but not mouse cells induced tumor-selective cell death. Tumor glycolysis was assessed by injecting [1,6-13C2]glucose and measuring 13C-labeled metabolites in tumor extracts. Injection of hyperpolarized [1-13C]pyruvate induced rapid reduction in lactate labeling. This decrease, which correlated with an increase in histologic markers of cell death and preceded decrease in tumor volume, reflected reduced flux from glucose to lactate and decreased lactate concentration. However, [18F]FDG uptake and phosphorylation were maintained following treatment, which has been attributed previously to increased [18F]FDG uptake by infiltrating immune cells. Quantification of [18F]FDG uptake in flow-sorted tumor and immune cells from disaggregated tumors identified CD11b+/CD45+ macrophages as the most [18F]FDG-avid cell type present, yet they represented <5% of the cells present in the tumors and could not explain the failure of [18F]FDG-PET to detect treatment response. MRI measurement of hyperpolarized [1-13C]pyruvate metabolism is therefore a more sensitive marker of the early decreases in glycolytic flux that occur following cell death than PET measurements of [18F]FDG uptake. SIGNIFICANCE: These findings demonstrate superior sensitivity of MRI measurement of hyperpolarized [1-13C]pyruvate metabolism versus PET measurement of 18F-FDG uptake for detecting early changes in glycolysis following treatment-induced tumor cell death.


Asunto(s)
Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Animales , Antineoplásicos/farmacología , Isótopos de Carbono , Muerte Celular/fisiología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Glucólisis/efectos de los fármacos , Xenoinjertos , Humanos , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos BALB C , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Ácido Pirúvico/metabolismo , Radiofármacos/farmacocinética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
6.
Nat Commun ; 8: 14333, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186186

RESUMEN

Invasion of erythrocytes by Plasmodium falciparum merozoites is necessary for malaria pathogenesis and is therefore a primary target for vaccine development. RH5 is a leading subunit vaccine candidate because anti-RH5 antibodies inhibit parasite growth and the interaction with its erythrocyte receptor basigin is essential for invasion. RH5 is secreted, complexes with other parasite proteins including CyRPA and RIPR, and contains a conserved N-terminal region (RH5Nt) of unknown function that is cleaved from the native protein. Here, we identify P113 as a merozoite surface protein that directly interacts with RH5Nt. Using recombinant proteins and a sensitive protein interaction assay, we establish the binding interdependencies of all the other known RH5 complex components and conclude that the RH5Nt-P113 interaction provides a releasable mechanism for anchoring RH5 to the merozoite surface. We exploit these findings to design a chemically synthesized peptide corresponding to RH5Nt, which could contribute to a cost-effective malaria vaccine.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Proteínas Portadoras/inmunología , Eritrocitos/inmunología , Eritrocitos/parasitología , Células HEK293 , Humanos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA