Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 249: 108138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522329

RESUMEN

BACKGROUND AND OBJECTIVES: Atrial fibrillation (AF) is a widespread cardiac arrhythmia that significantly impacts heart function. AF disrupts atrial mechanical contraction, leading to irregular, uncoordinated, and slow blood flow inside the atria which favors the formation of clots, primarily within the left atrium (LA). A standardized region-based analysis of the LA is missing, and there is not even any consensus about how to define the LA regions. In this study we propose an automatic approach for regionalizing the LA into segments to provide a comprehensive 3D region-based LA contraction assessment. LA global and regional contraction were quantified in control subjects and in AF patients to describe mechanical abnormalities associated with AF. METHODS: The proposed automatic approach for LA regionalization was tested in thirteen control subjects and seventeen AF patients. After dividing LA into standard regions, we evaluated the global and regional mechanical function by measuring LA contraction parameters, such as regional volume, global and regional strains, regional wall motion and regional shortening fraction. RESULTS: LA regionalization was successful in all study subjects. In the AF group compared with control subjects, results showed: a global impairment of LA contraction which appeared more pronounced along radial and circumferential direction; a regional impairment of radial strain which was more pronounced in septal, inferior, and lateral regions suggesting a greater reduction in mechanical efficiency in these regions in comparison to the posterior and anterior ones. CONCLUSION: An automatic approach for LA regionalization was proposed. The regionalization method was proved to be robust with several LA anatomical variations and able to characterize contraction changes associated with AF.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico por imagen , Atrios Cardíacos/diagnóstico por imagen
2.
Front Cardiovasc Med ; 10: 1067964, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891242

RESUMEN

Atrial fibrillation (AF) is one of the most investigated arrhythmias since it is associated with a five-fold increase in the risk of strokes. Left atrium dilation and unbalanced and irregular contraction caused by AF favour blood stasis and, consequently, stroke risk. The left atrial appendage (LAA) is the site of the highest clots formation, increasing the incidence of stroke in AF population. For many years oral anticoagulation therapy has been the most used AF treatment option available to decrease stroke risk. Unfortunately, several contraindications including bleeding risk increase, interference with other drugs and with multiorgan functioning, might outweigh its remarkable benefits on thromboembolic events. For these reasons, in recent years, other approaches have been designed, including LAA percutaneous closure. Unfortunately, nowadays, LAA occlusion (LAAO) is restricted to small subgroups of patients and require a certain level of expertise and training to successfully complete the procedure without complications. The most critical clinical problems associated with LAAO are represented by peri-device leaks and device related thrombus (DRT). The anatomical variability of the LAA plays a key role in the choice of the correct LAA occlusion device and in its correct positioning with respect to the LAA ostium during the implant. In this scenario, computational fluid dynamics (CFD) simulations could have a crucial role in improving LAAO intervention. The aim of this study was to simulate the fluid dynamics effects of LAAO in AF patients to predict hemodynamic changes due to the occlusion. LAAO was simulated by applying two different types of closure devices based on the plug and the pacifier principles on 3D LA anatomical models derived from real clinical data in five AF patients. CFD simulations were performed on the left atrium model before and after the LAAO intervention with each device. Blood velocity, particle washout and endothelial damage were computed to quantify flow pattern changes after the occlusion in relation to the thrombogenic risk. Our preliminary results confirmed an improved blood washout after the simulated implants and the capability of foreseeing thrombogenic risk based on endothelial damage and maximum blood velocities in different scenarios. This tool may help to identify effective device configurations in limiting stroke risk for patient-specific LA morphologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA