Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 137, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922529

RESUMEN

The protection of marine habitats from human-generated underwater noise is an emerging challenge. Baseline information on sound levels, however, is poorly available, especially in the Mediterranean Sea. To bridge this knowledge gap, the SOUNDSCAPE project ran a basin-scale, cross-national, long-term underwater monitoring in the Northern Adriatic Sea. A network of nine monitoring stations, characterized by different natural conditions and anthropogenic pressures, ensured acoustic data collection from March 2020 to June 2021, including the full lockdown period related to the COVID-19 pandemic. Calibrated stationary recorders featured with an omnidirectional Neptune Sonar D60 Hydrophone recorded continuously 24 h a day (48 kHz sampling rate, 16 bit resolution). Data were analysed to Sound Pressure Levels (SPLs) with a specially developed and validated processing app. Here, we release the dataset composed of 20 and 60 seconds averaged SPLs (one-third octave, base 10) output files and a Python script to postprocess them. This dataset represents a benchmark for scientists and policymakers addressing the risk of noise impacts on marine fauna in the Mediterranean Sea and worldwide.

3.
Mar Pollut Bull ; 138: 561-574, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30660307

RESUMEN

Microplastic research has mainly concentrated on open seas, while riverine plumes remain largely unexplored despite their hypothesized importance as a microplastic source to coastal waters. This work aimed to model coastal accumulation of microplastic particles (1-5 mm) emitted by the Po River over 1.5 years. We posit that river-induced microplastic accumulation on adjacent coasts can be predicted using (1) hydrodynamic-based and (2) remote sensing-based modelling. Model accumulation maps were validated against sampling at nine beaches, with sediment microplastic concentrations up to 78 particles/kg (dry weight). Hydrodynamic modelling revealed that discharged particle amount is only semi-coupled to beaching rates, which are strongly mouth dependent and occur within the first ten days. Remote sensing modelling was found to better capture river mouth relative strength, and accumulation patterns were found consistent with hydrodynamic modelling. This methodology lays groundwork for developing an operational monitoring system to assess microplastic pollution emitted by a major river.


Asunto(s)
Monitoreo del Ambiente/métodos , Plásticos/análisis , Tecnología de Sensores Remotos/métodos , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/análisis , Hidrodinámica , Italia , Modelos Teóricos , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...