Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 30(8): 2512-2525.e9, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101732

RESUMEN

Type I interferons (IFNs) play critical roles in anti-viral and anti-tumor immunity. However, they also suppress protective immune responses in some infectious diseases. Here, we identify type I IFNs as major upstream regulators of CD4+ T cells from visceral leishmaniasis (VL) patients. Furthermore, we report that mice deficient in type I IFN signaling have significantly improved control of Leishmania donovani, a causative agent of human VL, associated with enhanced IFNγ but reduced IL-10 production by parasite-specific CD4+ T cells. Importantly, we identify a small-molecule inhibitor that can be used to block type I IFN signaling during established infection and acts synergistically with conventional anti-parasitic drugs to improve parasite clearance and enhance anti-parasitic CD4+ T cell responses in mice and humans. Thus, manipulation of type I IFN signaling is a promising strategy for improving disease outcome in VL patients.


Asunto(s)
Inmunidad/efectos de los fármacos , Interferón Tipo I/farmacología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Parásitos/inmunología , Anfotericina B/farmacología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Epítopos , Humanos , Inflamación/inmunología , Inflamación/patología , Interferón gamma/farmacología , Ratones Endogámicos C57BL , Nitrilos , Parásitos/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/efectos de los fármacos
2.
J Immunol ; 201(11): 3362-3372, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30355785

RESUMEN

The outcome of intracellular parasitic infection can be determined by the immunoregulatory activities of natural regulatory CD4+ Foxp3+ T (Treg) cells and the anti-inflammatory cytokine IL-10. These mechanisms protect tissue but can also suppress antiparasitic CD4+ T cell responses. The specific contribution of these regulatory pathways during human parasitic diseases remains unclear. In this study, we investigated the roles of Treg cells and IL-10 during experimental visceral leishmaniasis caused by Leishmania donovani infection of C57BL/6 mice. We report only a limited contribution of Treg cells in suppressing antiparasitic immunity, but important roles in delaying the development of splenic pathology and restricting leukocyte expansion. We next employed a range of cell-specific, IL-10- and IL-10R-deficient mice and found these Treg cell functions were independent of IL-10. Instead, conventional CD4+ T cells and dendritic cells were the most important cellular sources of IL-10, and the absence of IL-10 in either cell population resulted in greater control of parasite growth but also caused accelerated breakdown in splenic microarchitecture. We also found that T cells, dendritic cells, and other myeloid cells were the main IL-10-responding cells because in the absence of IL-10R expression by these cell populations, there was greater expansion of parasite-specific CD4+ T cell responses associated with improved control of parasite growth. Again, however, there was also an accelerated breakdown in splenic microarchitecture in these animals. Together, these findings identify distinct, cell-specific, immunoregulatory networks established during experimental visceral leishmaniasis that could be manipulated for clinical advantage.


Asunto(s)
Interleucina-10/metabolismo , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Bazo/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos CD4/metabolismo , Células Cultivadas , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Inmunomodulación , Ratones , Ratones Endogámicos C57BL , Modelos Animales
3.
Clin Transl Immunology ; 7(1): e1003, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29484181

RESUMEN

Objectives: Innate lymphoid cells (ILCs) share many characteristics with CD4+ T cells, and group 1 ILCs share a requirement for T-bet and the ability to produce IFNγ with T helper 1 (Th1) cells. Given this similarity, and the importance of Th1 cells for protection against intracellular protozoan parasites, we aimed to characterise the role of group 1 ILCs during Plasmodium infection. Methods: We quantified group 1 ILCs in peripheral blood collected from subjects infected with with Plasmodium falciparum 3D7 as part of a controlled human malaria infection study, and in the liver and spleens of Pc AS-infected mice. We used genetically-modified mouse models, as well as cell-depletion methods in mice to characterise the role of group 1 ILCs during Pc AS infection. Results: In a controlled human malaria infection study, we found that the frequencies of circulating ILC1s and NK cells decreased as infection progressed but recovered after volunteers were treated with antiparasitic drug. A similar observation was made for liver and splenic ILC1s in P. chabaudi chabaudi AS (Pc AS)-infected mice. The decrease in mouse liver ILC1 frequencies was associated with increased apoptosis. We also identified a population of cells within the liver and spleen that expressed both ILC1 and NK cell markers, indicative of plasticity between these two cell lineages. Studies using genetic and cell-depletion approaches indicated that group 1 ILCs have a limited role in antiparasitic immunity during Pc AS infection in mice. Discussion: Our results are consistent with a previous study indicating a limited role for natural killer (NK) cells during Plasmodium chabaudi infection in mice. Additionally, a recent study reported the redundancy of ILCs in humans with competent B and T cells. Nonetheless, our results do not rule out a role for group 1 ILCs in human malaria in endemic settings given that blood stage infection was initiated intravenously in our experimental models, and thus bypassed the liver stage of infection, which may influence the immune response during the blood stage. Conclusion: Our results show that ILC1s are lost early during mouse and human malaria, and this observation may help to explain the limited role for these cells in controlling blood stage infection.

4.
Front Immunol ; 8: 1307, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075269

RESUMEN

Many infectious diseases are characterized by the development of immunoregulatory pathways that contribute to pathogen persistence and associated disease symptoms. In diseases caused by intracellular parasites, such as visceral leishmaniasis (VL), various immune modulators have the capacity to negatively impact protective CD4+ T cell functions. Galectin-1 is widely expressed on immune cells and has previously been shown to suppress inflammatory responses and promote the development of CD4+ T cells with immunoregulatory characteristics. Here, we investigated the role of galectin-1 in experimental VL caused by infection of C57BL/6 mice with Leishmania donovani. Mice lacking galectin-1 expression exhibited enhanced tissue-specific control of parasite growth in the liver, associated with an augmented Th1 cell response. However, unlike reports in other experimental models, we found little role for galectin-1 in the generation of IL-10-producing Th1 (Tr1) cells, and instead report that galectin-1 suppressed hepatic Th1 cell development. Furthermore, we found relatively early effects of galectin-1 deficiency on parasite growth, suggesting involvement of innate immune cells. However, experiments investigating the impact of galectin-1 deficiency on dendritic cells indicated that they were not responsible for the phenotypes observed in galectin-1-deficient mice. Instead, studies examining galectin-1 expression by CD4+ T cells supported a T cell intrinsic role for galectin-1 in the suppression of hepatic Th1 cell development during experimental VL. Together, our findings provide new information on the roles of galectin-1 during parasitic infection and indicate an important role for this molecule in tissue-specific Th1 cell development, but not CD4+ T cell IL-10 production.

5.
Cell Rep ; 17(2): 399-412, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705789

RESUMEN

The development of immunoregulatory networks is important to prevent disease. However, these same networks allow pathogens to persist and reduce vaccine efficacy. Here, we identify type I interferons (IFNs) as important regulators in developing anti-parasitic immunity in healthy volunteers infected for the first time with Plasmodium falciparum. Type I IFNs suppressed innate immune cell function and parasitic-specific CD4+ T cell IFNγ production, and they promoted the development of parasitic-specific IL-10-producing Th1 (Tr1) cells. Type I IFN-dependent, parasite-specific IL-10 production was also observed in P. falciparum malaria patients in the field following chemoprophylaxis. Parasite-induced IL-10 suppressed inflammatory cytokine production, and IL-10 levels after drug treatment were positively associated with parasite burdens before anti-parasitic drug administration. These findings have important implications for understanding the development of host immune responses following blood-stage P. falciparum infection, and they identify type I IFNs and related signaling pathways as potential targets for therapies or vaccine efficacy improvement.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Inmunidad Innata/genética , Interferón Tipo I/genética , Malaria Falciparum/inmunología , Antiparasitarios/administración & dosificación , Linfocitos T CD4-Positivos/inmunología , Voluntarios Sanos , Humanos , Interferón Tipo I/inmunología , Interferón gamma/genética , Interleucina-10/genética , Interleucina-10/inmunología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Células TH1/inmunología , Células TH1/metabolismo
6.
Sci Rep ; 6: 26210, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27217330

RESUMEN

Even after years of experiencing malaria, caused by infection with Plasmodium species, individuals still have incomplete immunity and develop low-density parasitemia on re-infection. Previous studies using the P. chabaudi (Pch) mouse model to understand the reason for chronic malaria, found that mice with a deletion of programmed cell death-1 (PD-1KO) generate sterile immunity unlike wild type (WT) mice. Here we investigated if the mechanism underlying this defect during acute immunity also impacts on long-term immunity. We infected WT and PD-1KO mice with Pch-malaria and measured protection as well as immune responses against re-infections, 15 or 20 weeks after the original infection had cleared. WT mice showed approximately 1% parasitemia compared to sterile immunity in PD-1KO mice on re-infection. An examination of the mechanisms of immunity behind this long-term protection in PD-1KO mice showed a key role for parasite-specific CD8(+) T cells even when CD4(+) T cells and B cells responded to re-infection. These studies indicate that long-term CD8(+) T cell-meditated protection requires consideration for future malaria vaccine design, as part of a multi-cell type response.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Malaria/inmunología , Plasmodium chabaudi/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Muerte Celular Programada 1/deficiencia
8.
PLoS Negl Trop Dis ; 10(2): e0004415, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26872334

RESUMEN

Chronic disease caused by infections, cancer or autoimmunity can result in profound immune suppression. Immunoregulatory networks are established to prevent tissue damage caused by inflammation. Although these immune checkpoints preserve tissue function, they allow pathogens and tumors to persist, and even expand. Immune checkpoint blockade has recently been successfully employed to treat cancer. This strategy modulates immunoregulatory mechanisms to allow host immune cells to kill or control tumors. However, the utility of this approach for controlling established infections has not been extensively investigated. Here, we examined the potential of modulating glucocorticoid-induced TNF receptor-related protein (GITR) on T cells to improve anti-parasitic immunity in blood and spleen tissue from visceral leishmaniasis (VL) patients infected with Leishmania donovani. We found little effect on parasite growth or parasite-specific IFNγ production. However, this treatment reversed the improved anti-parasitic immunity achieved by IL-10 signaling blockade. Further investigations using an experimental VL model caused by infection of C57BL/6 mice with L. donovani revealed that this negative effect was prominent in the liver, dependent on parasite burden and associated with an accumulation of Th1 cells expressing high levels of KLRG-1. Nevertheless, combined anti-IL-10 and anti-GITR mAb treatment could improve anti-parasitic immunity when used with sub-optimal doses of anti-parasitic drug. However, additional studies with VL patient samples indicated that targeting GITR had no overall benefit over IL-10 signaling blockade alone at improving anti-parasitic immune responses, even with drug treatment cover. These findings identify several important factors that influence the effectiveness of immune modulation, including parasite burden, target tissue and the use of anti-parasitic drug. Critically, these results also highlight potential negative effects of combining different immune modulation strategies.


Asunto(s)
Inmunoterapia , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/terapia , Animales , Citocinas/inmunología , Femenino , Humanos , Interleucina-10/inmunología , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología , Bazo/parasitología , Células TH1/inmunología
9.
PLoS Pathog ; 12(1): e1005398, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26765224

RESUMEN

Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.


Asunto(s)
Inflamación/inmunología , Interleucina-10/biosíntesis , Leishmaniasis Visceral/inmunología , Proteínas Represoras/inmunología , Células TH1/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Inflamación/patología , Interleucina-10/inmunología , Leishmaniasis Visceral/patología , Malaria/inmunología , Malaria/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Fluorescente , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Linfocitos T Reguladores/inmunología
10.
J Immunol ; 195(12): 5707-17, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26538396

RESUMEN

Intracellular infections, such as those caused by the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL), require a potent host proinflammatory response for control. IL-17 has emerged as an important proinflammatory cytokine required for limiting growth of both extracellular and intracellular pathogens. However, there are conflicting reports on the exact roles for IL-17 during parasitic infections and limited knowledge about cellular sources and the immune pathways it modulates. We examined the role of IL-17 in an experimental model of VL caused by infection of C57BL/6 mice with L. donovani and identified an early suppressive role for IL-17 in the liver that limited control of parasite growth. IL-17-producing γδ T cells recruited to the liver in the first week of infection were the critical source of IL-17 in this model, and CCR2(+) inflammatory monocytes were an important target for the suppressive effects of IL-17. Improved parasite control was independent of NO generation, but associated with maintenance of superoxide dismutase mRNA expression in the absence of IL-17 in the liver. Thus, we have identified a novel inhibitory function for IL-17 in parasitic infection, and our results demonstrate important interactions among γδ T cells, monocytes, and infected macrophages in the liver that can determine the outcome of parasitic infection.


Asunto(s)
Interleucina-17/metabolismo , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Hígado/inmunología , Linfocitos T/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Terapia de Inmunosupresión , Leishmania donovani/crecimiento & desarrollo , Hígado/parasitología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/parasitología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores CCR2/metabolismo , Superóxido Dismutasa/metabolismo , Linfocitos T/parasitología
11.
Clin Vaccine Immunol ; 22(5): 477-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25716232

RESUMEN

Acute lower respiratory tract infections (ALRTI) are the leading cause of global childhood mortality, with human respiratory syncytial virus (hRSV) being a major cause of viral ALRTI in young children worldwide. In sub-Saharan Africa, many young children experience severe illnesses due to hRSV or Plasmodium infection. Although the incidence of malaria in this region has decreased in recent years, there remains a significant opportunity for coinfection. Recent data show that febrile young children infected with Plasmodium are often concurrently infected with respiratory viral pathogens but are less likely to suffer from pneumonia than are non-Plasmodium-infected children. Here, we hypothesized that blood-stage Plasmodium infection modulates pulmonary inflammatory responses to a viral pathogen but does not aid its control in the lung. To test this, we established a novel coinfection model in which mice were simultaneously infected with pneumovirus of mice (PVM) (to model hRSV) and blood-stage Plasmodium chabaudi chabaudi AS (PcAS) parasites. We found that PcAS infection was unaffected by coinfection with PVM. In contrast, PVM-associated weight loss, pulmonary cytokine responses, and immune cell recruitment to the airways were substantially reduced by coinfection with PcAS. Importantly, PcAS coinfection facilitated greater viral dissemination throughout the lung. Although Plasmodium coinfection induced low levels of systemic interleukin-10 (IL-10), this regulatory cytokine played no role in the modulation of lung inflammation or viral dissemination. Instead, we found that Plasmodium coinfection drove an early systemic beta interferon (IFN-ß) response. Therefore, we propose that blood-stage Plasmodium coinfection may exacerbate viral dissemination and impair inflammation in the lung by dysregulating type I IFN-dependent responses to respiratory viruses.


Asunto(s)
Bronquiolitis Viral/inmunología , Coinfección , Interferón beta/inmunología , Pulmón/virología , Malaria/inmunología , Infecciones por Pneumovirus/inmunología , Pneumovirus/inmunología , Animales , Bronquiolitis Viral/virología , Modelos Animales de Enfermedad , Femenino , Inflamación/inmunología , Inflamación/parasitología , Inflamación/virología , Interferón beta/sangre , Interleucina-10/inmunología , Pulmón/inmunología , Malaria/complicaciones , Plasmodium chabaudi , Pneumovirus/patogenicidad , Pneumovirus/fisiología , Infecciones por Pneumovirus/complicaciones , Virus Sincitial Respiratorio Humano/patogenicidad , Carga Viral , Pérdida de Peso
12.
PLoS Negl Trop Dis ; 8(7): e2914, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25010815

RESUMEN

Visceral leishmaniasis is a chronic parasitic disease associated with severe immune dysfunction. Treatment options are limited to relatively toxic drugs, and there is no vaccine for humans available. Hence, there is an urgent need to better understand immune responses following infection with Leishmania species by studying animal models of disease and clinical samples from patients. Here, we review recent discoveries in these areas and highlight shortcomings in our knowledge that need to be addressed if better treatment options are to be developed and effective vaccines designed.


Asunto(s)
Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/inmunología , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Vacunas contra la Leishmaniasis
13.
J Immunol ; 192(8): 3709-18, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24634490

RESUMEN

Organ-specific immunity is a feature of many infectious diseases, including visceral leishmaniasis caused by Leishmania donovani. Experimental visceral leishmaniasis in genetically susceptible mice is characterized by an acute, resolving infection in the liver and chronic infection in the spleen. CD4+ T cell responses are critical for the establishment and maintenance of hepatic immunity in this disease model, but their role in chronically infected spleens remains unclear. In this study, we show that dendritic cells are critical for CD4+ T cell activation and expansion in all tissue sites examined. We found that FTY720-mediated blockade of T cell trafficking early in infection prevented Ag-specific CD4+ T cells from appearing in lymph nodes, but not the spleen and liver, suggesting that early CD4+ T cell priming does not occur in liver-draining lymph nodes. Extended treatment with FTY720 over the first month of infection increased parasite burdens, although this associated with blockade of lymphocyte egress from secondary lymphoid tissue, as well as with more generalized splenic lymphopenia. Importantly, we demonstrate that CD4+ T cells are required for the establishment and maintenance of antiparasitic immunity in the liver, as well as for immune surveillance and suppression of parasite outgrowth in chronically infected spleens. Finally, although early CD4+ T cell priming appeared to occur most effectively in the spleen, we unexpectedly revealed that protective CD4+ T cell-mediated hepatic immunity could be generated in the complete absence of all secondary lymphoid tissues.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Animales , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Clorhidrato de Fingolimod , Inmunosupresores/farmacología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/parasitología , Activación de Linfocitos/inmunología , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/inmunología , Tejido Linfoide/parasitología , Ratones , Ratones Noqueados , Glicoles de Propileno/farmacología , Esfingosina/análogos & derivados , Esfingosina/farmacología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/parasitología
14.
Int J Cancer ; 131(4): 813-20, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21932420

RESUMEN

Oncogenic PIK3CA mutations contribute to colorectal tumorigenesis by activating AKT signaling to decrease apoptosis and increase tumor invasion. A synergistic association of PIK3CA mutation with KRAS mutation has been suggested to increase AKT signaling and resistance to antiepidermal growth factor receptor inhibitor therapy for advanced colorectal cancer, although studies have been conflicting. We sought to clarify this by examining PIK3CA mutation frequency in relation to other key molecular features of defined pathways of tumorigenesis. PIK3CA mutation was assessed by high resolution melt analysis in 829 colorectal cancer samples and 426 colorectal polyps. Mutations were independently correlated with clinicopathological features including patient age, sex and tumor location as well as molecular features including microsatellite instability, KRAS and BRAF mutation, MGMT methylation and the CpG Island Methylator Phenotype (CIMP). Mutation of the helical (Exon 9) and catalytic (Exon 20) domain mutation hotspots were also examined independently. Overall, PIK3CA mutation was positively correlated with KRAS mutation (p < 0.001), MGMT methylation (p = 0.007) and CIMP (p < 0.001). Novel, exon-specific associations linked Exon 9 mutations to a subgroup of cancers characterized by KRAS mutation, MGMT methylation and CIMP-Low, whilst Exon 20 mutations were more closely linked to features of serrated pathway tumors including BRAF mutation, microsatellite instability and CIMP-High or Low. PIK3CA mutations were uncommonly, but exclusively, seen in tubulovillous adenomas (4/124, 3.2%) and 1/4 (25.0%) tubulovillous adenomas with a focus of cancer. These data provide insight into the molecular events driving traditional versus serrated pathway tumorigenesis.


Asunto(s)
Pólipos del Colon/genética , Neoplasias Colorrectales/genética , Oncogenes , Fosfatidilinositol 3-Quinasas/genética , Anciano , Secuencia de Bases , Fosfatidilinositol 3-Quinasa Clase I , Estudios de Cohortes , Cartilla de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...