Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Plant ; 9(3): 323-337, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26584714

RESUMEN

The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase.


Asunto(s)
Membrana Celular/metabolismo , Células Vegetales/metabolismo , Fenómenos Fisiológicos de las Plantas , ATPasas de Translocación de Protón/metabolismo , Transporte Biológico , Células Vegetales/microbiología , Procesamiento Proteico-Postraduccional
2.
J Biol Chem ; 290(33): 20396-406, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26134563

RESUMEN

The plasma membrane H(+)-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H(+)/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H(+)-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H(+)-ATPases is labile in the basal state, which may provide an explanation for the low H(+)/ATP coupling ratio of these pumps in the basal state.


Asunto(s)
Berilio/farmacología , Fluoruros/farmacología , Procesamiento Proteico-Postraduccional , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Hidrólisis , Bombas de Protones/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
3.
Trends Plant Sci ; 20(7): 426-34, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26027462

RESUMEN

Organic farming is based on the concept of working 'with nature' instead of against it; however, compared with conventional farming, organic farming reportedly has lower productivity. Ideally, the goal should be to narrow this yield gap. In this review, we specifically discuss the feasibility of new breeding techniques (NBTs) for rewilding, a process involving the reintroduction of properties from the wild relatives of crops, as a method to close the productivity gap. The most efficient methods of rewilding are based on modern biotechnology techniques, which have yet to be embraced by the organic farming movement. Thus, the question arises of whether the adoption of such methods is feasible, not only from a technological perspective, but also from conceptual, socioeconomic, ethical, and regulatory perspectives.


Asunto(s)
Agricultura Orgánica , Fitomejoramiento , Estudios de Factibilidad
4.
J Biol Chem ; 290(26): 16281-91, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25971968

RESUMEN

Eukaryotic P-type plasma membrane H(+)-ATPases are primary active transport systems that are regulated at the post-translation level by cis-acting autoinhibitory domains, which can be relieved by protein kinase-mediated phosphorylation or binding of specific lipid species. Here we show that lysophospholipids specifically activate a plant plasma membrane H(+)-ATPase (Arabidopsis thaliana AHA2) by a mechanism that involves both cytoplasmic terminal domains of AHA2, whereas they have no effect on the fungal counterpart (Saccharomyces cerevisiae Pma1p). The activation was dependent on the glycerol backbone of the lysophospholipid and increased with acyl chain length, whereas the headgroup had little effect on activation. Activation of the plant pump by lysophospholipids did not involve the penultimate residue, Thr-947, which is known to be phosphorylated as part of a binding site for activating 14-3-3 protein, but was critically dependent on a single autoinhibitory residue (Leu-919) upstream of the C-terminal cytoplasmic domain in AHA2. A corresponding residue is absent in the fungal counterpart. These data indicate that plant plasma membrane H(+)-ATPases evolved as specific receptors for lysophospholipids and support the hypothesis that lysophospholipids are important plant signaling molecules.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Lisofosfolípidos/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/química , Membrana Celular/enzimología , Membrana Celular/genética , Activación Enzimática , Fosforilación , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Trends Plant Sci ; 20(3): 155-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25529373

RESUMEN

Sustainable agriculture in response to increasing demands for food depends on development of high-yielding crops with high nutritional value that require minimal intervention during growth. To date, the focus has been on changing plants by introducing genes that impart new properties, which the plants and their ancestors never possessed. By contrast, we suggest another potentially beneficial and perhaps less controversial strategy that modern plant biotechnology may adopt. This approach, which broadens earlier approaches to reverse breeding, aims to furnish crops with lost properties that their ancestors once possessed in order to tolerate adverse environmental conditions. What molecular techniques are available for implementing such rewilding? Are the strategies legally, socially, economically, and ethically feasible? These are the questions addressed in this review.


Asunto(s)
Agricultura/métodos , Cruzamiento/métodos , Productos Agrícolas/genética , Agricultura/legislación & jurisprudencia , Biotecnología/legislación & jurisprudencia , Biotecnología/métodos , Cruzamiento/legislación & jurisprudencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...