Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 1275, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277503

RESUMEN

The RAP (RNA-binding domain abundant in Apicomplexans) protein family has been identified in various organisms. Despite expansion of this protein family in apicomplexan parasites, their main biological functions remain unknown. In this study, we use inducible knockdown studies in the human malaria parasite, Plasmodium falciparum, to show that two RAP proteins, PF3D7_0105200 (PfRAP01) and PF3D7_1470600 (PfRAP21), are essential for parasite survival and localize to the mitochondrion. Using transcriptomics, metabolomics, and proteomics profiling experiments, we further demonstrate that these RAP proteins are involved in mitochondrial RNA metabolism. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (eCLIP-seq), we validate that PfRAP01 and PfRAP21 are true RNA-binding proteins and interact specifically with mitochondrial rRNAs. Finally, mitochondrial enrichment experiments followed by deep sequencing of small RNAs demonstrate that PfRAP21 controls mitochondrial rRNA expression. Collectively, our results establish the role of these RAP proteins in mitoribosome activity and contribute to further understanding this protein family in malaria parasites.


Asunto(s)
Malaria Falciparum , Ribosomas Mitocondriales , Plasmodium falciparum , Proteínas Protozoarias , Proteínas de Unión al ARN , Genómica , Humanos , Malaria Falciparum/parasitología , Ribosomas Mitocondriales/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Sci Rep ; 11(1): 342, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431920

RESUMEN

Establishing robust genome engineering methods in the malarial parasite, Plasmodium falciparum, has the potential to substantially improve the efficiency with which we gain understanding of this pathogen's biology to propel treatment and elimination efforts. Methods for manipulating gene expression and engineering the P. falciparum genome have been validated. However, a significant barrier to fully leveraging these advances is the difficulty associated with assembling the extremely high AT content DNA constructs required for modifying the P. falciparum genome. These are frequently unstable in commonly-used circular plasmids. We address this bottleneck by devising a DNA assembly framework leveraging the improved reliability with which large AT-rich regions can be efficiently manipulated in linear plasmids. This framework integrates several key functional genetics outcomes via CRISPR/Cas9 and other methods from a common, validated framework. Overall, this molecular toolkit enables P. falciparum genetics broadly and facilitates deeper interrogation of parasite genes involved in diverse biological processes.


Asunto(s)
Ingeniería Genética , Genoma de Protozoos/genética , Plasmodium falciparum/genética , Transcriptoma
3.
mSphere ; 4(5)2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619500

RESUMEN

Little is known regarding how the chronic Toxoplasma gondii cyst develops. Here, we investigated intravacuolar-network-associated dense granule (GRA) proteins GRA1, GRA2, GRA4, GRA6, GRA9, and GRA12 during cyst development in vitro after differentiation of the tachyzoite-stage parasitophorous vacuole. By day 1 postdifferentiation, GRA1, GRA4, GRA6, GRA9, and GRA12 colocalized with Dolichos biflorus agglutinin stain at the cyst periphery. In contrast, GRA2 remained in the cyst matrix. By day 2 postdifferentiation, coinciding with localization of GRA2 to the cyst periphery, GRA1, GRA4, GRA6, and GRA9 established a continuous matrix pattern in the cyst. In contrast, GRA2 and GRA12 were colocalized in prominent cyst matrix puncta throughout cyst development. While GRA2, GRA6, and GRA12 localized in outer and inner layers of the cyst wall, GRA1, GRA4, and GRA9 localized predominantly in the inner layers of the cyst wall. GRA2 and GRA12 were colocalized in the cyst wall by day 7 postdifferentiation. However, by day 10 postdifferentiation, GRA12 was relocalized from the cyst wall to puncta in the cyst matrix. Differentiation of Δgra2 parasites revealed a defect in the ability to establish a normal cyst matrix. In addition, the deletion of any intravacuolar-network-associated GRA protein, except GRA1, reduced the rate of accumulation of cyst wall proteins at the cyst periphery relative to the cyst interior. Our findings reveal dynamic patterns of GRA protein localization during cyst development and suggest that intravacuolar-network-associated GRA proteins regulate the formation and maturation of the cyst matrix and cyst wall structures.IMPORTANCEToxoplasma gondii establishes chronic infection in humans by forming thick-walled cysts that persist in the brain. If host immunity wanes, cysts reactivate to cause severe, and often lethal, toxoplasmic encephalitis. There is no available therapy to eliminate cysts or to prevent their reactivation. Moreover, how the vital and characteristic cyst matrix and cyst wall structures develop is poorly understood. Here, we visualized and tracked the localization of Toxoplasma intravacuolar-network-associated dense granule (GRA) proteins during cyst development in vitro Intravacuolar-network GRAs were present within the cyst matrix and at the cyst wall in developing cysts, and genetic deletion of intravacuolar-network-associated GRAs reduced the rate of accumulation of cyst wall material at the cyst periphery. Our results show that intravacuolar-network-associated GRAs, particularly GRA2 and GRA12, play dynamic and essential roles in the development and maturation of the cyst matrix and the cyst wall structures.


Asunto(s)
Antígenos de Protozoos/genética , Proteínas Protozoarias/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasma/genética , Células Cultivadas , Fibroblastos/parasitología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Humanos , Estadios del Ciclo de Vida , Organismos Modificados Genéticamente
4.
mBio ; 10(4)2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266861

RESUMEN

Toxoplasma gondii evades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronic Toxoplasma infection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cysts in vivo without affecting the parasite growth rate or the ability to differentiate into cysts in vitro Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4 mutants was reduced but not abolished. In contrast, the PruΔgra12 mutant was avirulent in mice and PruΔgra12 parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12 parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12 and type II PruΔgra12 parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80 and type II PruΔku80 strains, respectively. Despite this resistance, Δgra12 PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondii cysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cysts in vivo A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Interferón gamma/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Vacuolas/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Membranas Intracelulares/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Teóricos , Proteínas Protozoarias/genética , Análisis de Supervivencia , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
mBio ; 7(3)2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27165797

RESUMEN

UNLABELLED: Ingestion of the obligate intracellular protozoan parasite Toxoplasma gondii causes an acute infection that leads to chronic infection of the host. To facilitate the acute phase of the infection, T. gondii manipulates the host response by secreting rhoptry organelle proteins (ROPs) into host cells during its invasion. A few key ROP proteins with signatures of kinases or pseudokinases (ROPKs) act as virulence factors that enhance parasite survival against host gamma interferon-stimulated innate immunity. However, the roles of these and other ROPK proteins in establishing chronic infection have not been tested. Here, we deleted 26 ROPK gene loci encoding 31 unique ROPK proteins of type II T. gondii and show that numerous ROPK proteins influence the development of chronic infection. Cyst burdens were increased in the Δrop16 knockout strain or moderately reduced in 11 ROPK knockout strains. In contrast, deletion of ROP5, ROP17, ROP18, ROP35, or ROP38/29/19 (ROP38, ROP29, and ROP19) severely reduced cyst burdens. Δrop5 and Δrop18 knockout strains were less resistant to host immunity-related GTPases (IRGs) and exhibited >100-fold-reduced virulence. ROP18 kinase activity and association with the parasitophorous vacuole membrane were necessary for resistance to host IRGs. The Δrop17 strain exhibited a >12-fold defect in virulence; however, virulence was not affected in the Δrop35 or Δrop38/29/19 strain. Resistance to host IRGs was not affected in the Δrop17, Δrop35, or Δrop38/29/19 strain. Collectively, these findings provide the first definitive evidence that the type II T. gondii ROPK proteome functions as virulence factors and facilitates additional mechanisms of host manipulation that are essential for chronic infection and transmission of T. gondii IMPORTANCE: Reactivation of chronic Toxoplasma gondii infection in individuals with weakened immune systems causes severe toxoplasmosis. Existing treatments for toxoplasmosis are complicated by adverse reactions to chemotherapy. Understanding key parasite molecules required for chronic infection provides new insights into potential mechanisms that can interrupt parasite survival or persistence in the host. This study reveals that key secreted rhoptry molecules are used by the parasite to establish chronic infection of the host. Certain rhoptry proteins were found to be critical virulence factors that resist innate immunity, while other rhoptry proteins were found to influence chronic infection without affecting virulence. This study reveals that rhoptry proteins utilize multiple mechanisms of host manipulation to establish chronic infection of the host. Targeted disruption of parasite rhoptry proteins involved in these biological processes opens new avenues to interfere with chronic infection with the goal to either eliminate chronic infection or to prevent recrudescent infections.


Asunto(s)
Proteínas Quinasas/genética , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/patogenicidad , Toxoplasmosis Animal/parasitología , Animales , Enfermedad Crónica , Femenino , Técnicas de Inactivación de Genes , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Toxoplasmosis Animal/inmunología , Factores de Virulencia/genética
6.
Nat Commun ; 7: 10727, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26925876

RESUMEN

Synthetic posttranscriptional regulation of gene expression is important for understanding fundamental biology and programming new cellular processes in synthetic biology. Previous strategies for regulating translation in eukaryotes have focused on disrupting individual steps in translation, including initiation and mRNA cleavage. In emphasizing modularity and cross-organism functionality, these systems are designed to operate orthogonally to native control mechanisms. Here we introduce a broadly applicable strategy for robustly controlling protein translation by integrating synthetic translational control via a small-molecule-regulated RNA-protein module with native mechanisms that simultaneously regulate multiple facets of cellular RNA fate. We demonstrate that this strategy reduces 'leakiness' to improve overall expression dynamic range, and can be implemented without sacrificing modularity and cross-organism functionality. We illustrate this in Saccharomyces cerevisae and the non-model human malarial parasite, Plasmodium falciparum. Given the limited functional genetics toolkit available for P. falciparum, we establish the utility of this strategy for defining essential genes.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Plasmodium falciparum/metabolismo , Clonación Molecular , Plasmodium falciparum/genética , Procesamiento Postranscripcional del ARN , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
J Vis Exp ; (77): e50598, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23892917

RESUMEN

Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein(1,2). The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale(1-4). Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).


Asunto(s)
Marcación de Gen/métodos , Genoma de Protozoos , Toxoplasma/genética , Antígenos Nucleares/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Recombinación Homóloga , Autoantígeno Ku
8.
Acta Trop ; 120(1-2): 59-66, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21718675

RESUMEN

Spliced leader intergenic region (SL-IR) sequences from 23 Trypanosoma rangeli strains isolated from the salivary glands of Rhodnius colombiensis, R. ecuadoriensis, R. pallescens and R. prolixus and two human strains revealed the existence of 4 genotypes with CA, GT, TA, ATT and GTAT microsatellite repeats and the presence of insertions/deletions (INDEL) and single nucleotide polymorphism (SNP) characterizing each genotype. The strains isolated from the same vector species or the same Rhodnius evolutionary line presented the same genotypes, even in cases where strains had been isolated from vectors captured in geographically distant regions. The dendrogram constructed from the SL-IR sequences separated all of them into two main groups, one with the genotypes isolated from R. prolixus and the other group containing three well defined sub-groups with the genotypes isolated from R. pallescens, R. colombiensis and R. ecuadoriensis. Random amplified polymorphic DNA (RAPD) analysis showed the same two main groups and sub-groups supporting strict T. rangeli genotypes' association with Rhodnius species. Combined with other studies, these results suggest a possible co-evolutionary association between T. rangeli genotypes and their vectors.


Asunto(s)
Evolución Molecular , Genoma de Protozoos/genética , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Rhodnius/parasitología , Trypanosoma rangeli/genética , Animales , Evolución Biológica , ADN Intergénico/genética , ADN Protozoario/genética , Variación Genética , Genotipo , Interacciones Huésped-Parásitos , Humanos , Insectos Vectores/parasitología , Filogenia , ARN Lider Empalmado/genética , Análisis de Secuencia de ADN , Trypanosoma rangeli/clasificación , Trypanosoma rangeli/aislamiento & purificación
9.
PLoS Negl Trop Dis ; 5(5): e1195, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21655304

RESUMEN

AIMS: To determine the incidence of congenital toxoplasmosis in Colombian newborns from 19 hospital or maternal child health services from seven different cities of five natural geographic regions (Caribbean, Central, Andean, Amazonia and Eastern). MATERIALS AND METHODS: We collected 15,333 samples from umbilical cord blood between the period of March 2009 to May 2010 in 19 different hospitals and maternal-child health services from seven different cities. We applied an IgM ELISA assay (Vircell, Spain) to determine the frequency of IgM anti Toxoplasma. The results in blood cord samples were confirmed either by western blot and repeated ELISA IgM assay. In a sub-sample of 1,613 children that were negative by the anti-Toxoplasma IgM assay, the frequency of specific anti-Toxoplasma IgA by the ISAGA assay was determined. All children with positive samples by IgM, IgA, clinical diagnosis or treatment during pregnancy were recalled for confirmatory tests after day 10 of life. RESULTS: 61 positive samples for specific IgM (0.39%) and 9 positives for IgA (0.5%) were found. 143 questionnaires were positive for a clinical diagnosis or treatment for toxoplasmosis during pregnancy. 109 out of the 218 children that had some of the criteria for postnatal confirmatory tests were followed. Congenital toxoplasmosis infection was confirmed in 15 children: 7 were symptomatic, and three of them died before the first month of life (20% of lethality). A significant correlation was found between a high incidence of markers for congenital toxoplasmosis and higher mean annual rainfall for the city. CONCLUSIONS: Incidence for congenital toxoplasmosis is significantly different between hospitals or maternal child health services from different cities in Colombia. Mean annual rainfall was correlated with incidence of congenital toxoplasmosis.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Toxoplasma/aislamiento & purificación , Toxoplasmosis Congénita/epidemiología , Western Blotting , Colombia/epidemiología , Ensayo de Inmunoadsorción Enzimática , Sangre Fetal/inmunología , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina M/sangre , Incidencia , Recién Nacido , Tamizaje Masivo/métodos , Parasitología/métodos , Estudios Seroepidemiológicos , Toxoplasma/inmunología , Toxoplasmosis Congénita/diagnóstico , Tiempo (Meteorología)
10.
Eukaryot Cell ; 10(9): 1193-206, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21531875

RESUMEN

Type II Toxoplasma gondii KU80 knockouts (Δku80) deficient in nonhomologous end joining were developed to delete the dominant pathway mediating random integration of targeting episomes. Gene targeting frequency in the type II Δku80 Δhxgprt strain measured at the orotate (OPRT) and the uracil (UPRT) phosphoribosyltransferase loci was highly efficient. To assess the potential of the type II Δku80 Δhxgprt strain to examine gene function affecting cyst biology and latent stages of infection, we targeted the deletion of four parasite antigen genes (GRA4, GRA6, ROP7, and tgd057) that encode characterized CD8(+) T cell epitopes that elicit corresponding antigen-specific CD8(+) T cell populations associated with control of infection. Cyst development in these type II mutant strains was not found to be strictly dependent on antigen-specific CD8(+) T cell host responses. In contrast, a significant biological role was revealed for the dense granule proteins GRA4 and GRA6 in cyst development since brain tissue cyst burdens were drastically reduced specifically in mutant strains with GRA4 and/or GRA6 deleted. Complementation of the Δgra4 and Δgra6 mutant strains using a functional allele of the deleted GRA coding region placed under the control of the endogenous UPRT locus was found to significantly restore brain cyst burdens. These results reveal that GRA proteins play a functional role in establishing cyst burdens and latent infection. Collectively, our results suggest that a type II Δku80 Δhxgprt genetic background enables a higher-throughput functional analysis of the parasite genome to reveal fundamental aspects of parasite biology controlling virulence, pathogenesis, and transmission.


Asunto(s)
Antígenos de Protozoos/genética , Eliminación de Gen , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasmosis Animal/parasitología , Animales , Antígenos de Protozoos/metabolismo , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Enfermedades Transmisibles/microbiología , Técnicas de Inactivación de Genes , Marcación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Protozoarias/metabolismo
11.
Infect Genet Evol ; 11(2): 300-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21111067

RESUMEN

Internal and geographical clustering within Trypanosoma cruzi I (TcI) has been recently revealed by using Multilocus Microsatellite Typing and sequencing of the Spliced-Leader Intergenic Region (SL-IR). In the present work, 14 isolates and 11 laboratory-cloned stocks obtained from a geographically restricted area in Chaco Province, Argentina, were analyzed by PCR and sequencing of SL-IR. We were able to differentiate 8 different genotypes that clustered into 4 groups. One of these groups was classified within the formerly described haplotype A and another one within the recently described SL-IR group E. Both were phylogenetically well-supported. In contrast, none of the stocks from the Chaco province were grouped within the cluster previously named haplotype D despite the fact that they shared a similar microsatellite motif in the SL-IR. No evidence of recombination or gene conversion within these stocks was found. On the other hand, multiple ambiguous alignments in the microsatellite region of SL-IR, affecting the tree topology and relationships among groups were detected. Finally, since there are multiple copies of the SL-IR, and they are arranged in tandem, we discuss how molecular processes affecting this kind of sequences could mislead phylogenetic inference.


Asunto(s)
ADN Intergénico/genética , Variación Genética , Tipificación de Secuencias Multilocus/métodos , ARN Lider Empalmado , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética , Argentina , Teorema de Bayes , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , ADN Protozoario/genética , Genotipo , Geografía , Haplotipos , Humanos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
12.
Acta Trop ; 110(1): 15-21, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19135020

RESUMEN

Genetic variability in the Trypanosoma cruzi I group has recently been revealed in Colombian isolates from humans, reservoirs and vectors. Genomic rearrangements and the polymorphic regions in taxonomic markers, such as the miniexon gene, have led to the development of molecular tools to identify phylogenetic haplotypes in T. cruzi isolates. From genetic polymorphisms found in T. cruzi I isolates, they have been classified into four haplotypes according to their epidemiologic transmission cycles. Haplotype Ia is associated with domestic isolates, from Rhodnius prolixus; haplotype Ib, with the domestic and peridomestic cycle, mainly associated with Triatoma dimidiata; haplotype Ic is a poorly characterized group, which has been associated with the peridomestic cycle; and haplotype Id has been related to the sylvatic cycle. In order to demonstrate that the circulating T. cruzi I isolates in Colombia can be classified in the four proposed haplotypes, specific primers were designed on polymorphic regions of the miniexon gene's intergenic sequences. This set of primers allowed the molecular characterization of 33 Colombian isolates, classifying them into three of the four proposed haplotypes (Ia, Ib and Id). Results obtained from maximum parsimony and maximum-likelihood-based phylogenetic analyses correlated with the molecular classification of the isolates and their transmission cycles. This study brings insights into the Chagas disease epidemiology and the parasite's transmission dynamics.


Asunto(s)
Enfermedad de Chagas/parasitología , Vectores de Enfermedades , Haplotipos , Rhodnius/parasitología , Trypanosoma cruzi/genética , Animales , Secuencia de Bases , Colombia , ADN Protozoario/genética , Humanos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Trypanosoma cruzi/aislamiento & purificación
13.
J Parasitol Res ; 20092009.
Artículo en Inglés | MEDLINE | ID: mdl-20798881

RESUMEN

Phylogenetic studies of Trypanosoma cruzi have identified the existence of two groups: T. cruzi I and T. cruzi II. There are aspects that still remain unknown about the genetic variability within the T. cruzi I group. Given its epidemiological importance, it is necessary to have a better understanding of T. cruzi transmission cycles. Our purpose was to corroborate the existence of haplotypes within the T. cruzi I group and to describe the genetic variability and phylogenetic relationships, based on single nucleotide polymorphisms (SNPs) found in the miniexon gene intergenic region, for the isolates from different hosts and epidemiological transmission cycles in Colombian regions. 31 T. cruzi isolates were molecularly characterized. Phylogenetic relationships within T. cruzi I isolates showed four haplotype groups (Ia-Id), associated with their transmission cycle. In previous studies, we reported that haplotype Ia is mainly associated with the domestic cycle and domiciliated Rhodnius prolixus. Haplotype Ib is associated with the domestic cycle and peridomestic cycle, haplotype Ic is closely related with the peridomestic cycle, and haplotype Id is strongly associated with the sylvatic cycle. The phylogenetic methodologies applied in this study are tools that bolster the associations among isolates and thus shed light on Chagas disease epidemiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...