Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Cancer Res ; 83(12): 1953-1967, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062029

RESUMEN

Mutations in the KEAP1-NRF2 (Kelch-like ECH-associated protein 1-nuclear factor-erythroid 2 p45-related factor 2) pathway occur in up to a third of non-small cell lung cancer (NSCLC) cases and often confer resistance to therapy and poor outcomes. Here, we developed murine alleles of the KEAP1 and NRF2 mutations found in human NSCLC and comprehensively interrogated their impact on tumor initiation and progression. Chronic NRF2 stabilization by Keap1 or Nrf2 mutation was not sufficient to induce tumorigenesis, even in the absence of tumor suppressors, p53 or LKB1. When combined with KrasG12D/+, constitutive NRF2 activation promoted lung tumor initiation and early progression of hyperplasia to low-grade tumors but impaired their progression to advanced-grade tumors, which was reversed by NRF2 deletion. Finally, NRF2 overexpression in KEAP1 mutant human NSCLC cell lines was detrimental to cell proliferation, viability, and anchorage-independent colony formation. Collectively, these results establish the context-dependence and activity threshold for NRF2 during the lung tumorigenic process. SIGNIFICANCE: Stabilization of the transcription factor NRF2 promotes oncogene-driven tumor initiation but blocks tumor progression, indicating distinct, threshold-dependent effects of the KEAP1/NRF2 pathway in different stages of lung tumorigenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Transducción de Señal , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pulmón/patología , Neoplasias Pulmonares/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
3.
Cancer Res ; 83(9): 1426-1442, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862034

RESUMEN

Cysteine plays critical roles in cellular biosynthesis, enzyme catalysis, and redox metabolism. The intracellular cysteine pool can be sustained by cystine uptake or de novo synthesis from serine and homocysteine. Demand for cysteine is increased during tumorigenesis for generating glutathione to deal with oxidative stress. While cultured cells have been shown to be highly dependent on exogenous cystine for proliferation and survival, how diverse tissues obtain and use cysteine in vivo has not been characterized. We comprehensively interrogated cysteine metabolism in normal murine tissues and cancers that arise from them using stable isotope 13C1-serine and 13C6-cystine tracing. De novo cysteine synthesis was highest in normal liver and pancreas and absent in lung tissue, while cysteine synthesis was either inactive or downregulated during tumorigenesis. In contrast, cystine uptake and metabolism to downstream metabolites was a universal feature of normal tissues and tumors. However, differences in glutathione labeling from cysteine were evident across tumor types. Thus, cystine is a major contributor to the cysteine pool in tumors, and glutathione metabolism is differentially active across tumor types. SIGNIFICANCE: Stable isotope 13C1-serine and 13C6-cystine tracing characterizes cysteine metabolism in normal murine tissues and its rewiring in tumors using genetically engineered mouse models of liver, pancreas, and lung cancers.


Asunto(s)
Cisteína , Neoplasias , Ratones , Animales , Cisteína/metabolismo , Cistina/metabolismo , Glutatión/metabolismo , Carcinogénesis , Serina , Mamíferos/metabolismo
4.
Cell Rep ; 42(3): 112218, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36897780

RESUMEN

Metabolic routing of nicotinamide (NAM) to NAD+ or 1-methylnicotinamide (MeNAM) has impacts on human health and aging. NAM is imported by cells or liberated from NAD+. The fate of 2H4-NAM in cultured cells, mice, and humans was determined by stable isotope tracing. 2H4-NAM is an NAD+ precursor via the salvage pathway in cultured A549 cells and human PBMCs and in A549 cell xenografts and PBMCs from 2H4-NAM-dosed mice and humans, respectively. 2H4-NAM is a MeNAM precursor in A549 cell cultures and xenografts, but not isolated PBMCs. NAM released from NAD+ is a poor MeNAM precursor. Additional A549 cell tracer studies yielded further mechanistic insight. NAMPT activators promote NAD+ synthesis and consumption. Surprisingly, NAM liberated from NAD+ in NAMPT activator-treated A549 cells is also routed toward MeNAM production. Metabolic fate mapping of the dual NAM sources across the translational spectrum (cells, mice, humans) illuminates a key regulatory node governing NAD+ and MeNAM synthesis.


Asunto(s)
NAD , Niacinamida , Humanos , Ratones , Animales , NAD/metabolismo , Niacinamida/farmacología , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Células Cultivadas , Envejecimiento , Citocinas/metabolismo
5.
bioRxiv ; 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38168428

RESUMEN

Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.

6.
RNA Biol ; 19(1): 353-363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35289721

RESUMEN

Circular RNAs (circRNAs) are a class of non-coding RNAs featuring a covalently closed ring structure formed through backsplicing. circRNAs are broadly expressed and contribute to biological processes through a variety of functions. Standard gain-of-function and loss-of-function approaches to study gene functions have significant limitations when studying circRNAs. Overexpression studies in particular suffer from the lack of efficient genetic tools. While mammalian expression plasmids enable transient circRNA overexpression in cultured cells, most cell biological studies require long-term ectopic expression. Here we report the development and characterization of genetic tools enabling stable circRNA overexpression in vitro and in vivo. We demonstrated that circRNA expression constructs can be delivered to cultured cells via transposons, whereas lentiviral vectors have limited utility for the delivery of circRNA constructs due to viral RNA splicing in virus-producing cells. We further demonstrated ectopic circRNA expression in a hepatocellular carcinoma mouse model upon circRNA transposon delivery via hydrodynamic tail vein injection. Furthermore, we generated genetically engineered mice harbouring circRNA expression constructs. We demonstrated that this approach enables constitutive, global circRNA overexpression as well as inducible circRNA expression directed specifically to melanocytes in a melanoma mouse model. These tools expand the genetic toolkit available for the functional characterization of circRNAs.


Asunto(s)
MicroARNs , ARN Circular , Animales , Mamíferos/genética , Ratones , MicroARNs/genética , ARN/genética , ARN/metabolismo , Empalme del ARN , ARN Viral/genética
7.
Cell Metab ; 33(1): 174-189.e7, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33357455

RESUMEN

Cysteine is required for maintaining cellular redox homeostasis in both normal and transformed cells. Deprivation of cysteine induces the iron-dependent form of cell death known as ferroptosis; however, the metabolic consequences of cysteine starvation beyond impairment of glutathione synthesis are poorly characterized. Here, we find that cystine starvation of non-small-cell lung cancer cell lines induces an unexpected accumulation of γ-glutamyl-peptides, which are produced due to a non-canonical activity of glutamate-cysteine ligase catalytic subunit (GCLC). This activity is enriched in cell lines with high levels of NRF2, a key transcriptional regulator of GCLC, but is also inducible in healthy murine tissues following cysteine limitation. γ-glutamyl-peptide synthesis limits the accumulation of glutamate, thereby protecting against ferroptosis. These results indicate that GCLC has a glutathione-independent, non-canonical role in the protection against ferroptosis by maintaining glutamate homeostasis under cystine starvation.


Asunto(s)
Ferroptosis , Glutamato-Cisteína Ligasa/metabolismo , Animales , Línea Celular Tumoral , Glutamato-Cisteína Ligasa/deficiencia , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
8.
Cancer Metab ; 8: 6, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32549981

RESUMEN

BACKGROUND: d-3-phosphoglycerate dehydrogenase (PHGDH), which encodes the first enzyme in serine biosynthesis, is overexpressed in human cancers and has been proposed as a drug target. However, whether PHGDH is critical for the proliferation or homeostasis of tissues following the postnatal period is unknown. METHODS: To study PHGDH inhibition in adult animals, we developed a knock-in mouse model harboring a PHGDH shRNA under the control of a doxycycline-inducible promoter. With this model, PHGDH depletion can be globally induced in adult animals, while sparing the brain due to poor doxycycline delivery. RESULTS: We found that PHGDH depletion is well tolerated, and no overt phenotypes were observed in multiple highly proliferative cell compartments. Further, despite detectable knockdown and impaired serine synthesis, liver and pancreatic functions were normal. Interestingly, diminished PHGDH expression reduced liver serine and ceramide levels without increasing the levels of deoxysphingolipids. Further, liver triacylglycerol profiles were altered, with an accumulation of longer chain, polyunsaturated tails upon PHGDH knockdown. CONCLUSIONS: These results suggest that dietary serine is adequate to support the function of healthy, adult murine tissues, but PHGDH-derived serine supports liver ceramide synthesis and sustains general lipid homeostasis.

9.
J Exp Med ; 217(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196080

RESUMEN

Human lung tumors exhibit robust and complex mitochondrial metabolism, likely precipitated by the highly oxygenated nature of pulmonary tissue. As ROS generation is a byproduct of this metabolism, reducing power in the form of nicotinamide adenine dinucleotide phosphate (NADPH) is required to mitigate oxidative stress in response to this heightened mitochondrial activity. Nicotinamide nucleotide transhydrogenase (NNT) is known to sustain mitochondrial antioxidant capacity through the generation of NADPH; however, its function in non-small cell lung cancer (NSCLC) has not been established. We found that NNT expression significantly enhances tumor formation and aggressiveness in mouse models of lung tumor initiation and progression. We further show that NNT loss elicits mitochondrial dysfunction independent of substantial increases in oxidative stress, but rather marked by the diminished activities of proteins dependent on resident iron-sulfur clusters. These defects were associated with both NADPH availability and ROS accumulation, suggesting that NNT serves a specific role in mitigating the oxidation of these critical protein cofactors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/enzimología , Proteínas Hierro-Azufre/metabolismo , Neoplasias Pulmonares/enzimología , Mitocondrias/metabolismo , NADP Transhidrogenasas/metabolismo , Aconitato Hidratasa/metabolismo , Animales , Antioxidantes/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Catalasa/metabolismo , Línea Celular Tumoral , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , NADP/metabolismo , Oxidantes/toxicidad , Oxidación-Reducción , Estrés Oxidativo , Tiorredoxinas/metabolismo
10.
Redox Biol ; 30: 101440, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32007910

RESUMEN

Alterations in the NRF2/KEAP1 pathway result in the constitutive activation of NRF2, leading to the aberrant induction of antioxidant and detoxification enzymes, including NQO1. The NQO1 bioactivatable agent ß-lapachone can target cells with high NQO1 expression but relies in the generation of reactive oxygen species (ROS), which are actively scavenged in cells with NRF2/KEAP1 mutations. However, whether NRF2/KEAP1 mutations influence the response to ß-lapachone treatment remains unknown. To address this question, we assessed the cytotoxicity of ß-lapachone in a panel of NSCLC cell lines bearing either wild-type or mutant KEAP1. We found that, despite overexpression of NQO1, KEAP1 mutant cells were resistant to ß-lapachone due to enhanced detoxification of ROS, which prevented DNA damage and cell death. To evaluate whether specific inhibition of the NRF2-regulated antioxidant enzymes could abrogate resistance to ß-lapachone, we systematically inhibited the four major antioxidant cellular systems using genetic and/or pharmacologic approaches. We demonstrated that inhibition of the thioredoxin-dependent system or copper-zinc superoxide dismutase (SOD1) could abrogate NRF2-mediated resistance to ß-lapachone, while depletion of catalase or glutathione was ineffective. Interestingly, inhibition of SOD1 selectively sensitized KEAP1 mutant cells to ß-lapachone exposure. Our results suggest that NRF2/KEAP1 mutational status might serve as a predictive biomarker for response to NQO1-bioactivatable quinones in patients. Further, our results suggest SOD1 inhibition may have potential utility in combination with other ROS inducers in patients with KEAP1/NRF2 mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos , Neoplasias Pulmonares/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , Factor 2 Relacionado con NF-E2/genética , Naftoquinonas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Superóxido Dismutasa-1/antagonistas & inhibidores , Tiorredoxina Reductasa 1/antagonistas & inhibidores
12.
Elife ; 82019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31107239

RESUMEN

NRF2 is emerging as a major regulator of cellular metabolism. However, most studies have been performed in cancer cells, where co-occurring mutations and tumor selective pressures complicate the influence of NRF2 on metabolism. Here we use genetically engineered, non-transformed primary murine cells to isolate the most immediate effects of NRF2 on cellular metabolism. We find that NRF2 promotes the accumulation of intracellular cysteine and engages the cysteine homeostatic control mechanism mediated by cysteine dioxygenase 1 (CDO1), which catalyzes the irreversible metabolism of cysteine to cysteine sulfinic acid (CSA). Notably, CDO1 is preferentially silenced by promoter methylation in human non-small cell lung cancers (NSCLC) harboring mutations in KEAP1, the negative regulator of NRF2. CDO1 silencing promotes proliferation of NSCLC by limiting the futile metabolism of cysteine to the wasteful and toxic byproducts CSA and sulfite (SO32-), and depletion of cellular NADPH. Thus, CDO1 is a metabolic liability for NSCLC cells with high intracellular cysteine, particularly NRF2/KEAP1 mutant cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Cisteína-Dioxigenasa/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales , Cisteína/análogos & derivados , Cisteína/metabolismo , Metilación de ADN , Silenciador del Gen , Humanos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...