Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nat Struct Mol Biol ; 31(4): 644-656, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279055

RESUMEN

CLCs are dimeric chloride channels and anion/proton exchangers that regulate processes such as muscle contraction and endo-lysosome acidification. Common gating controls their activity; its closure simultaneously silences both protomers, and its opening allows them to independently transport ions. Mutations affecting common gating in human CLCs cause dominant genetic disorders. The structural rearrangements underlying common gating are unknown. Here, using single-particle cryo-electron microscopy, we show that the prototypical Escherichia coli CLC-ec1 undergoes large-scale rearrangements in activating conditions. The slow, pH-dependent remodeling of the dimer interface leads to the concerted opening of the intracellular H+ pathways and is required for transport. The more frequent formation of short water wires in the open H+ pathway enables Cl- pore openings. Mutations at disease-causing sites favor CLC-ec1 activation and accelerate common gate opening in the human CLC-7 exchanger. We suggest that the pH activation mechanism of CLC-ec1 is related to the common gating of CLC-7.


Asunto(s)
Proteínas de Escherichia coli , Protones , Humanos , Microscopía por Crioelectrón , Iones/metabolismo , Canales de Cloruro/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Antiportadores/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(48): e2315011120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991948

RESUMEN

PLCß (Phospholipase Cß) enzymes cleave phosphatidylinositol 4,5-bisphosphate (PIP2) producing IP3 and DAG (diacylglycerol). PIP2 modulates the function of many ion channels, while IP3 and DAG regulate intracellular Ca2+ levels and protein phosphorylation by protein kinase C, respectively. PLCß enzymes are under the control of G protein coupled receptor signaling through direct interactions with G proteins Gßγ and Gαq and have been shown to be coincidence detectors for dual stimulation of Gαq and Gαi-coupled receptors. PLCßs are aqueous-soluble cytoplasmic enzymes but partition onto the membrane surface to access their lipid substrate, complicating their functional and structural characterization. Using newly developed methods, we recently showed that Gßγ activates PLCß3 by recruiting it to the membrane. Using these same methods, here we show that Gαq increases the catalytic rate constant, kcat, of PLCß3. Since stimulation of PLCß3 by Gαq depends on an autoinhibitory element (the X-Y linker), we propose that Gαq produces partial relief of the X-Y linker autoinhibition through an allosteric mechanism. We also determined membrane-bound structures of the PLCß3·Gαq and PLCß3·Gßγ(2)·Gαq complexes, which show that these G proteins can bind simultaneously and independently of each other to regulate PLCß3 activity. The structures rationalize a finding in the enzyme assay, that costimulation by both G proteins follows a product rule of each independent stimulus. We conclude that baseline activity of PLCß3 is strongly suppressed, but the effect of G proteins, especially acting together, provides a robust stimulus upon G protein stimulation.


Asunto(s)
Proteínas de Unión al GTP , Fosfatidilinositoles , Hidrólisis , Fosfolipasa C beta/metabolismo , Proteínas de Unión al GTP/metabolismo
4.
bioRxiv ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37693483

RESUMEN

PLCß enzymes cleave PIP2 producing IP3 and DAG. PIP2 modulates the function of many ion channels, while IP3 and DAG regulate intracellular Ca 2+ levels and protein phosphorylation by protein kinase C, respectively. PLCß enzymes are under the control of GPCR signaling through direct interactions with G proteins Gßγ and Gα q and have been shown to be coincidence detectors for dual stimulation of Gα q and G α i coupled receptors. PLCßs are aqueous-soluble cytoplasmic enzymes, but partition onto the membrane surface to access their lipid substrate, complicating their functional and structural characterization. Using newly developed methods, we recently showed that Gßγ activates PLCß3 by recruiting it to the membrane. Using these same methods, here we show that Gα q increases the catalytic rate constant, k cat , of PLCß3 . Since stimulation of PLCß3 by Gα q depends on an autoinhibitory element (the X-Y linker), we propose that Gα q produces partial relief of the X-Y linker autoinhibition through an allosteric mechanism. We also determined membrane-bound structures of the PLCß3-Gα q , and PLCß3-Gßγ(2)-Gα q complexes, which show that these G proteins can bind simultaneously and independently of each other to regulate PLCß3 activity. The structures rationalize a finding in the enzyme assay, that co-stimulation by both G proteins follows a product rule of each independent stimulus. We conclude that baseline activity of PLCß3 is strongly suppressed, but the effect of G proteins, especially acting together, provides a robust stimulus upon G protein stimulation. Significance Statement: For certain cellular signaling processes, the background activity of signaling enzymes must be minimal and stimulus-dependent activation robust. Nowhere is this truer than in signaling by PLCß3 , whose activity regulates intracellular Ca 2+ , phosphorylation by Protein Kinase C, and the activity of numerous ion channels and membrane receptors. In this study we show how PLCß3 enzymes are regulated by two kinds of G proteins, Gßγ and Gα q . Enzyme activity studies and structures on membranes show how these G proteins act by separate, independent mechanisms, leading to a product rule of co-stimulation when they act together. The findings explain how cells achieve robust stimulation of PLCß3 in the setting of very low background activity, properties essential to cell health and survival.

5.
Proc Natl Acad Sci U S A ; 120(20): e2301121120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37172014

RESUMEN

Phospholipase C-ßs (PLCßs) catalyze the hydrolysis of phosphatidylinositol 4, 5-bisphosphate [Formula: see text] into [Formula: see text] [Formula: see text] and [Formula: see text]  [Formula: see text]. [Formula: see text] regulates the activity of many membrane proteins, while IP3 and DAG lead to increased intracellular Ca2+ levels and activate protein kinase C, respectively. PLCßs are regulated by G protein-coupled receptors through direct interaction with [Formula: see text] and [Formula: see text] and are aqueous-soluble enzymes that must bind to the cell membrane to act on their lipid substrate. This study addresses the mechanism by which [Formula: see text] activates PLCß3. We show that PLCß3 functions as a slow Michaelis-Menten enzyme ( [Formula: see text] ) on membrane surfaces. We used membrane partitioning experiments to study the solution-membrane localization equilibrium of PLCß3. Its partition coefficient is such that only a small quantity of PLCß3 exists in the membrane in the absence of [Formula: see text] . When [Formula: see text] is present, equilibrium binding on the membrane surface increases PLCß3 in the membrane, increasing [Formula: see text] in proportion. Atomic structures on membrane vesicle surfaces show that two [Formula: see text] anchor PLCß3 with its catalytic site oriented toward the membrane surface. Taken together, the enzyme kinetic, membrane partitioning, and structural data show that [Formula: see text] activates PLCß by increasing its concentration on the membrane surface and orienting its catalytic core to engage [Formula: see text] . This principle of activation explains rapid stimulated catalysis with low background activity, which is essential to the biological processes mediated by [Formula: see text], IP3, and DAG.


Asunto(s)
Fosfatidilinositoles , Receptores Acoplados a Proteínas G , Hidrólisis , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Membranas/metabolismo
6.
Nat Commun ; 13(1): 2604, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35562175

RESUMEN

TMEM16 scramblases dissipate the plasma membrane lipid asymmetry to activate multiple eukaryotic cellular pathways. Scrambling was proposed to occur with lipid headgroups moving between leaflets through a membrane-spanning hydrophilic groove. Direct information on lipid-groove interactions is lacking. We report the 2.3 Å resolution cryogenic electron microscopy structure of the nanodisc-reconstituted Ca2+-bound afTMEM16 scramblase showing how rearrangement of individual lipids at the open pathway results in pronounced membrane thinning. Only the groove's intracellular vestibule contacts lipids, and mutagenesis suggests scrambling does not require specific protein-lipid interactions with the extracellular vestibule. We find scrambling can occur outside a closed groove in thinner membranes and is inhibited in thicker membranes, despite an open pathway. Our results show afTMEM16 thins the membrane to enable scrambling and that an open hydrophilic pathway is not a structural requirement to allow rapid transbilayer movement of lipids. This mechanism could be extended to other scramblases lacking a hydrophilic groove.


Asunto(s)
Lípidos de la Membrana , Proteínas de Transferencia de Fosfolípidos , Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Membranas/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo
7.
Methods Mol Biol ; 2127: 207-225, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32112325

RESUMEN

Phospholipid scramblases catalyze the rapid trans-bilayer movement of lipids down their concentration gradients. This process is essential for numerous cellular signaling functions including cell fusion, blood coagulation, and apoptosis. The importance of scramblases is highlighted by the number of human diseases caused by mutations in these proteins. Because of their indispensable function, it is essential to understand and characterize the molecular function of phospholipid scramblases. Powerful tools to measure lipid transport in cells are available. However, these approaches provide limited mechanistic insights into the molecular bases of scrambling. Here we describe in detail an in vitro phospholipid scramblase assay and the accompanying analysis which allows for determination of the macroscopic rate constants associated with phospholipid scrambling. Notably, members of the TMEM16 family of scramblases also function as nonselective ion channels. To better understand the physiological relevance of this channel function as well as its relationship to the scrambling activity of the TMEM16s we also describe in detail an in vitro flux assay to measure nonselective channel activity. Together, these two assays can be used to investigate the dual activities of the TMEM16 scramblases/nonselective channels.


Asunto(s)
Bioensayo/métodos , Canales Iónicos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Proteolípidos/metabolismo , Animales , Anoctaminas/química , Anoctaminas/metabolismo , Fluorescencia , Humanos , Canales Iónicos/química , Transporte Iónico , Iones/metabolismo , Liposomas/química , Liposomas/metabolismo , Modelos Teóricos , Fosfolípidos/química , Fosfolípidos/aislamiento & purificación , Renaturación de Proteína , Proteolípidos/química , Proteolípidos/aislamiento & purificación
8.
J Comput Chem ; 41(6): 538-551, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31750558

RESUMEN

Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Anoctaminas/química , Lípidos de la Membrana/química , Proteínas de Transferencia de Fosfolípidos/química , Anoctaminas/metabolismo , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Proteínas de Transferencia de Fosfolípidos/metabolismo
9.
Nat Commun ; 10(1): 4972, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672969

RESUMEN

Both lipid and ion translocation by Ca2+-regulated TMEM16 transmembrane proteins utilizes a membrane-exposed hydrophilic groove. Several conformations of the groove are observed in TMEM16 protein structures, but how these conformations form, and what functions they support, remains unknown. From analyses of atomistic molecular dynamics simulations of Ca2+-bound nhTMEM16 we find that the mechanism of a conformational transition of the groove from membrane-exposed to occluded from the membrane involves the repositioning of transmembrane helix 4 (TM4) following its disengagement from a TM3/TM4 interaction interface. Residue L302 is a key element in the hydrophobic TM3/TM4 interaction patch that braces the open-groove conformation, which should be changed by an L302A mutation. The structure of the L302A mutant determined by cryogenic electron microscopy (cryo-EM) reveals a partially closed groove that could translocate ions, but not lipids. This is corroborated with functional assays showing severely impaired lipid scrambling, but robust channel activity by L302A.


Asunto(s)
Anoctaminas/metabolismo , Calcio/metabolismo , Cloruros/metabolismo , Proteínas Fúngicas/metabolismo , Fosfolípidos/metabolismo , Anoctaminas/ultraestructura , Transporte Biológico , Microscopía por Crioelectrón , Proteínas Fúngicas/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Transporte Iónico , Simulación del Acoplamiento Molecular , Nectria , Conformación Proteica
10.
Nat Commun ; 10(1): 3956, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477691

RESUMEN

Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity.


Asunto(s)
Anoctaminas/metabolismo , Retículo Endoplásmico/metabolismo , Lípidos/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Animales , Anoctaminas/química , Anoctaminas/genética , Células COS , Calcio/química , Línea Celular Tumoral , Chlorocebus aethiops , Cristalografía por Rayos X , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera
11.
Elife ; 82019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30648972

RESUMEN

The lipid distribution of plasma membranes of eukaryotic cells is asymmetric and phospholipid scramblases disrupt this asymmetry by mediating the rapid, nonselective transport of lipids down their concentration gradients. As a result, phosphatidylserine is exposed to the outer leaflet of membrane, an important step in extracellular signaling networks controlling processes such as apoptosis, blood coagulation, membrane fusion and repair. Several TMEM16 family members have been identified as Ca2+-activated scramblases, but the mechanisms underlying their Ca2+-dependent gating and their effects on the surrounding lipid bilayer remain poorly understood. Here, we describe three high-resolution cryo-electron microscopy structures of a fungal scramblase from Aspergillus fumigatus, afTMEM16, reconstituted in lipid nanodiscs. These structures reveal that Ca2+-dependent activation of the scramblase entails global rearrangement of the transmembrane and cytosolic domains. These structures, together with functional experiments, suggest that activation of the protein thins the membrane near the transport pathway to facilitate rapid transbilayer lipid movement.


Asunto(s)
Aspergillus fumigatus/metabolismo , Calcio/farmacología , Proteínas Fúngicas/metabolismo , Lípidos/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Aspergillus fumigatus/efectos de los fármacos , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Ceramidas/farmacología , Proteínas Fúngicas/química , Ligandos , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Nanopartículas/química , Proteínas de Transferencia de Fosfolípidos/química , Conformación Proteica
12.
J Gen Physiol ; 150(7): 933-947, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29915161

RESUMEN

The TMEM16 family of membrane proteins is composed of both Ca2+-gated Cl- channels and Ca2+-dependent phospholipid scramblases. The functional diversity of TMEM16s underlies their involvement in numerous signal transduction pathways that connect changes in cytosolic Ca2+ levels to cellular signaling networks. Indeed, defects in the function of several TMEM16s cause a variety of genetic disorders, highlighting their fundamental pathophysiological importance. Here, we review how our mechanistic understanding of TMEM16 function has been shaped by recent functional and structural work. Remarkably, the recent determination of near-atomic-resolution structures of TMEM16 proteins of both functional persuasions has revealed how relatively minimal rearrangements in the substrate translocation pathway are sufficient to precipitate the dramatic functional differences that characterize the family. These structures, when interpreted in the light of extensive functional analysis, point to an unusual mechanism for Ca2+-dependent activation of TMEM16 proteins in which substrate permeation is regulated by a combination of conformational rearrangements and electrostatics. These breakthroughs pave the way to elucidate the mechanistic bases of ion and lipid transport by the TMEM16 proteins and unravel the molecular links between these transport activities and their function in human pathophysiology.


Asunto(s)
Anoctaminas/metabolismo , Animales , Anoctaminas/química , Anoctaminas/genética , Sitios de Unión , Calcio/metabolismo , Humanos , Homología de Secuencia
13.
Proc Natl Acad Sci U S A ; 115(30): E7033-E7042, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29925604

RESUMEN

Phospholipid scramblases externalize phosphatidylserine to facilitate numerous physiological processes. Several members of the structurally unrelated TMEM16 and G protein-coupled receptor (GPCR) protein families mediate phospholipid scrambling. The structure of a TMEM16 scramblase shows a membrane-exposed hydrophilic cavity, suggesting that scrambling occurs via the ?credit-card" mechanism where lipid headgroups permeate through the cavity while their tails remain associated with the membrane core. Here we show that afTMEM16 and opsin, representatives of the TMEM16 and GCPR scramblase families, transport phospholipids with polyethylene glycol headgroups whose globular dimensions are much larger than the width of the cavity. This suggests that transport of these large headgroups occurs outside rather than within the cavity. These large lipids are scrambled at rates comparable to those of normal phospholipids and their presence in the reconstituted vesicles promotes scrambling of normal phospholipids. This suggests that both large and small phospholipids can move outside the cavity. We propose that the conformational rearrangements underlying TMEM16- and GPCR-mediated credit-card scrambling locally deform the membrane to allow transbilayer lipid translocation outside the cavity and that both mechanisms underlie transport of normal phospholipids.


Asunto(s)
Anoctaminas/metabolismo , Metabolismo de los Lípidos/fisiología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Anoctaminas/genética , Transporte Biológico Activo/fisiología , Células HEK293 , Humanos , Proteínas de Transferencia de Fosfolípidos/genética , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA