Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2401009, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751156

RESUMEN

Biodegradable plastics, hailed for their environmental friendliness, may pose unforeseen risks as they undergo gastrointestinal degradation, forming oligomer nanoplastics. Despite this, the influence of gastrointestinal degradation on the potential human toxicity of biodegradable plastics remains poorly understood. To this end, the impact of the murine in vivo digestive system is investigated on the biotransformation, biodistribution, and toxicity of PLA polymer and PLA oligomer MPs. Through a 28-day repeated oral gavage study in mice, it is revealed that PLA polymer and oligomer microplastics undergo incomplete and complete degradation, respectively, in the gastrointestinal tract. Incompletely degraded PLA polymer microplastics transform into oligomer nanoplastics, heightening bioavailability and toxicity, thereby exacerbating overall toxic effects. Conversely, complete degradation of PLA oligomer microplastics reduces bioavailability and mitigates toxicity, offering a potential avenue for toxicity reduction. Additionally, the study illuminates shared targets and toxicity mechanisms in Parkinson's disease-like neurotoxicity induced by both PLA polymer and PLA oligomer microplastics. This involves the upregulation of MICU3 in midbrains, leading to neuronal mitochondrial calcium overload. Notably, neurotoxicity is mitigated by inhibiting mitochondrial calcium influx with MCU-i4 or facilitating mitochondrial calcium efflux with DBcAMP in mice. These findings enhance the understanding of the toxicological implications of biodegradable microplastics on human health.

2.
Environ Int ; 184: 108480, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38341879

RESUMEN

1,2-Dichloroethane (1,2-DCE) is a prevalent environmental contaminant, and our study revealed its induction of testicular toxicity in mice upon subacute exposure. Melatonin, a prominent secretory product of the pineal gland, has been shown to offer protection against pyroptosis in male reproductive toxicity. However, the exact mechanism underlying 1,2-DCE-induced testicular toxicity and the comprehensive extent of melatonin's protective effects in this regard remain largely unexplored. Therefore, we sequenced testis piRNAs in mice exposed to environmentally relevant concentrations of 1,2-DCE by 28-day dynamic inhalation, and investigated the role of key piRNAs using GC-2 spd cells. Our results showed that 1,2-DCE induced mouse testicular damage and GC-2 spd cell pyroptosis. 1,2-DCE upregulated the expression of pyroptosis-correlated proteins in both mouse testes and GC-2 spd cells. 1,2-DCE exposure caused pore formation on cellular membranes and lactate dehydrogenase leakage in GC-2 spd cells. Additionally, we identified three upregulated piRNAs in 1,2-DCE-exposed mouse testes, among which piR-mmu-1019957 induced pyroptosis in GC-2 spd cells, and its inhibition alleviated 1,2-DCE-induced pyroptosis. PiR-mmu-1019957 mimic and 1,2-DCE treatment activated the expression of interferon regulatory factor 7 (IRF7) in GC-2 spd cells. IRF7 knockdown reversed 1,2-DCE-induced cellular pyroptosis, and overexpression of piR-mmu-1019957 did not promote pyroptosis when IRF7 was inhibited. Notably, melatonin reversed 1,2-DCE-caused testicular toxicity, cellular pyroptosis, and upregulated piR-mmu-1019957 and IRF7. Collectively, our findings indicated that melatonin mitigates this effect, suggesting its potential as a therapeutic intervention against 1,2-DCE-induced male reproductive toxicity in clinical practice.


Asunto(s)
Dicloruros de Etileno , Melatonina , Testículo , Masculino , Ratones , Animales , Piroptosis , Melatonina/farmacología , Melatonina/metabolismo , ARN de Interacción con Piwi , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/farmacología
3.
Part Fibre Toxicol ; 20(1): 44, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993864

RESUMEN

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging environmental contaminants detected in human samples, and have raised concerns regarding their potential risks to human health, particularly neurotoxicity. This study aimed to investigate the deleterious effects of polystyrene nanoplastics (PS-NPs, 50 nm) and understand their mechanisms in inducing Parkinson's disease (PD)-like neurodegeneration, along with exploring preventive strategies. METHODS: Following exposure to PS-NPs (0.5-500 µg/mL), we assessed cytotoxicity, mitochondrial integrity, ATP levels, and mitochondrial respiration in dopaminergic-differentiated SH-SY5Y cells. Molecular docking and dynamic simulations explored PS-NPs' interactions with mitochondrial complexes. We further probed mitophagy's pivotal role in PS-NP-induced mitochondrial damage and examined melatonin's ameliorative potential in vitro. We validated melatonin's intervention (intraperitoneal, 10 mg/kg/d) in C57BL/6 J mice exposed to 250 mg/kg/d of PS-NPs for 28 days. RESULTS: In our in vitro experiments, we observed PS-NP accumulation in cells, including mitochondria, leading to cell toxicity and reduced viability. Notably, antioxidant treatment failed to fully rescue viability, suggesting reactive oxygen species (ROS)-independent cytotoxicity. PS-NPs caused significant mitochondrial damage, characterized by altered morphology, reduced mitochondrial membrane potential, and decreased ATP production. Subsequent investigations pointed to PS-NP-induced disruption of mitochondrial respiration, potentially through interference with complex I (CI), a concept supported by molecular docking studies highlighting the influence of PS-NPs on CI. Rescue experiments using an AMPK pathway inhibitor (compound C) and an autophagy inhibitor (3-methyladenine) revealed that excessive mitophagy was induced through AMPK/ULK1 pathway activation, worsening mitochondrial damage and subsequent cell death in differentiated SH-SY5Y cells. Notably, we identified melatonin as a potential protective agent, capable of alleviating PS-NP-induced mitochondrial dysfunction. Lastly, our in vivo experiments demonstrated that melatonin could mitigate dopaminergic neuron loss and motor impairments by restoring mitophagy regulation in mice. CONCLUSIONS: Our study demonstrated that PS-NPs disrupt mitochondrial function by affecting CI, leading to excessive mitophagy through the AMPK/ULK1 pathway, causing dopaminergic neuron death. Melatonin can counteract PS-NP-induced mitochondrial dysfunction and motor impairments by regulating mitochondrial autophagy. These findings offer novel insights into the MNP-induced PD-like neurodegenerative mechanisms, and highlight melatonin's protective potential in mitigating the MNP's environmental risk.


Asunto(s)
Melatonina , Neuroblastoma , Humanos , Ratones , Animales , Mitofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Poliestirenos/metabolismo , Microplásticos , Neuronas Dopaminérgicas/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Simulación del Acoplamiento Molecular , Plásticos , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA