Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Zool Res ; 45(3): 551-566, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38757223

RESUMEN

Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Proteínas Proto-Oncogénicas p21(ras) , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Carcinoma Hepatocelular/patología , Ratones , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Ratones Endogámicos C57BL , Humanos
2.
Am J Hematol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38800953

RESUMEN

Pathogenic variants in HFE and non-HFE genes have been identified in hemochromatosis in different patient populations, but there are still a certain number of patients with unexplained primary iron overload. We recently identified in Chinese patients a recurrent p.(Arg639Gln) variant in SURP and G-patch domain containing 2 (SUGP2), a potential mRNA splicing-related factor. However, the target gene of SUGP2 and affected iron-regulating pathway remains unknown. We aimed to investigate the pathogenicity and underlying mechanism of this variant in hemochromatosis. RNA-seq analysis revealed that SUGP2 knockdown caused abnormal alternative splicing of CIRBP pre-mRNA, resulting in an increased normal splicing form of CIRBP V1, which in turn increased the expression of BMPER by enhancing its mRNA stability and translation. Furthermore, RNA-protein pull-down and RNA immunoprecipitation assays revealed that SUGP2 inhibited splicing of CIRBP pre-mRNA by a splice site variant at CIRBP c.492 and was more susceptible to CIRBP c.492 C/C genotype. Cells transfected with SUGP2 p.(Arg639Gln) vector showed up-regulation of CIRBP V1 and BMPER expression and down-regulation of pSMAD1/5 and HAMP expression. CRISPR-Cas9 mediated SUGP2 p.(Arg622Gln) knock-in mice showed increased iron accumulation in the liver, higher total serum iron, and decreased serum hepcidin level. A total of 10 of 54 patients with hemochromatosis (18.5%) harbored the SUGP2 p.(Arg639Gln) variant and carried CIRBP c.492 C/C genotype, and had increased BMPER expression in the liver. Altogether, the SUGP2 p.(Arg639Gln) variant down-regulates hepcidin expression through the SUGP2/CIRBP/BMPER axis, which may represent a novel pathogenic factor for hemochromatosis.

3.
Sci China Life Sci ; 67(7): 1502-1513, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38478297

RESUMEN

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Ratones Transgénicos , Pangolines , SARS-CoV-2 , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , COVID-19/virología , Pangolines/virología , Ratones , Replicación Viral , Pulmón/virología , Pulmón/patología , Chlorocebus aethiops , Células Vero
4.
Vaccines (Basel) ; 11(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37514949

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains widely pandemic around the world. Animal models that are sensitive to the virus are therefore urgently needed to evaluate potential vaccines and antiviral agents; however, SARS-CoV-2 requires biosafety level 3 containment. To overcome this, we developed an animal model using the intranasal administration of SARS-CoV-2 pseudovirus. As the pseudovirus contains the firefly luciferase reporter gene, infected tissues and the viral load could be monitored by in vivo bioluminescent imaging. We used the model to evaluate the protective efficacy of monoclonal antibodies and the tissue tropism of different variants. The model may also be a useful tool for the safe and convenient preliminary evaluation of the protective efficacy of vaccine candidates against SARS-CoV-2, as well as the treatment efficacy of anti-viral drugs.

5.
Cancer Sci ; 114(1): 115-128, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36114822

RESUMEN

Vascular endothelial growth factor receptor 2 (VEGFR2)/KDR plays a critical role in tumor growth, diffusion, and invasion. The amino acid sequence homology of KDR between mouse and human in the VEGF ligand-binding domain was low, thus the WT mice could not be used to evaluate Abs against human KDR, and the lack of a suitable mouse model hindered both basic research and drug developments. Using the CRISPR/Cas9 technique, we successfully inserted different fragments of the human KDR coding sequence into the chromosomal mouse Kdr exon 4 locus to obtain an hKDR humanized mouse that can be used to evaluate the marketed Ab ramucirumab. In addition, the humanized mAb VEGFR-HK19 was developed, and a series of comparative assays with ramucirumab as the benchmark revealed that VEGFR-HK19 has higher affinity and superior antiproliferation activity. Moreover, VEGFR-HK19 selectively inhibited tumor growth in the hKDR mouse model but not in WT mice. The most important binding epitopes of VEGFR2-HK19 are D257, L313, and T315, located in the VEGF binding region. Therefore, the VEGFR2-HK19 Ab inhibits tumor growth by blocking VEGF-induced angiogenesis, inflammation, and promoting apoptosis. To our best knowledge, this novel humanized KDR mouse fills the gaps both in an animal model and the suitable in vivo evaluation method for developing antiangiogenesis therapies in the future, and the newly established humanized Ab is expected to be a drug candidate possibly benefitting tumor patients.


Asunto(s)
Anticuerpos Neutralizantes , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Ratones , Animales , Anticuerpos Neutralizantes/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fosforilación , Unión Proteica , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular
6.
J Med Virol ; 95(1): e28400, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511115

RESUMEN

Enteroviral 2A proteinase (2Apro ), a well-established and important viral functional protein, plays a key role in shutting down cellular cap-dependent translation, mainly via its proteolytic activity, and creating optimal conditions for Enterovirus survival. Accumulated data show that viruses take advantage of various signaling cascades for their life cycle; studies performed by us and others have demonstrated that the extracellular signal-regulated kinase (ERK) pathway is essential for enterovirus A71 (EV-A71) and other viruses replication. We recently showed that ERK1/2 is required for the proteolytic activity of viral 2Apro ; however, the mechanism underlying the regulation of 2Apro remains unknown. Here, we demonstrated that the 125th residue Ser125 of EV-A71 2Apro or Thr125 of coxsackievirus B3 2Apro , which is highly conserved in the Enterovirus, was phosphorylated by ERK1/2. Importantly, 2Apro with phosphor-Ser/Thr125 had much stronger proteolytic activity toward eukaryotic initiation factor 4GI and rendered the virus more efficient for multiplication and pathogenesis in hSCARB2 knock-in mice than that in nonphospho-Ser/Thr125A (S/T125A) mutants. Notably, phosphorylation-mimic mutations caused deleterious changes in 2Apro catalytic function (S/T125D/E) and in viral propagation (S125D). Crystal structure simulation analysis showed that Ser125 phosphorylation in EV-A71 2Apro enabled catalytic Cys to adopt an optimal conformation in the catalytic triad His-Asp-Cys, which enhances 2Apro proteolysis. Therefore, we are the first to report Ser/Thr125 phosphorylation of 2Apro increases enteroviral adaptation to the host to ensure enteroviral multiplication, causing pathogenicity. Additionally, weakened viruses containing a S/T125A mutation could be a general strategy to develop attenuated Enterovirus vaccines.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Proteínas Virales , Animales , Ratones , Antígenos Virales/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Infecciones por Enterovirus/virología , Fosforilación , Proteolisis , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/fisiología
7.
Cell Res ; 32(12): 1068-1085, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357786

RESUMEN

The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein. HR121 consisting of HR1-linker1-HR2-linker2-HR1, is conformationally and functionally analogous to the HR1 domain present in the fusion intermediate conformation of S2 subunit. Immunization with HR121 in rabbits and rhesus macaques elicited highly potent cross-neutralizing antibodies against SARS-CoV-2 and its variants, particularly Omicron sublineages. Vaccination with HR121 achieved near-full protections against prototype SARS-CoV-2 infection in hACE2 transgenic mice, Syrian golden hamsters and rhesus macaques, and effective protection against Omicron BA.2 infection in Syrian golden hamsters. This study demonstrates that HR121 is a promising candidate of variant-proof SARS-CoV-2 vaccine with a novel conserved target in the S2 subunit for application against current and future SARS-CoV-2 variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Cricetinae , Ratones , Humanos , Conejos , SARS-CoV-2 , Macaca mulatta , Mesocricetus , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , Anticuerpos Neutralizantes , Ratones Transgénicos , Anticuerpos Antivirales
8.
Viruses ; 14(8)2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-36016362

RESUMEN

Intensive efforts have been made to develop models of hRSV infection or disease using various animals. However, the limitations such as semi-permissiveness and short duration of infection have impeded their applications in both the pathogenesis of hRSV and therapeutics development. Here, we present a mouse model based on a Rag2 gene knockout using CRISPR/Cas9 technology. Rag2-/- mice sustained high viral loads upon intranasal inoculation with hRSV. The average peak titer rapidly reached 1 × 109.8 copies/g and 1c106 TCID50 in nasal cavity, as well as 1 × 108 copies/g and 1 × 105 TCID50 in the lungs up to 5 weeks. Mild interstitial pneumonia, severe bronchopneumonia, elevated cytokines and NK cells were seen in Rag2-/- mice. A humanized monoclonal antibody showed strong antiviral activity in this animal model, implying that Rag2-/- mice that support long-term stable infection are a useful tool for studying the transmission and pathogenesis of human RSV, as well as evaluating therapeutics.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Modelos Animales de Enfermedad , Humanos , Pulmón , Ratones , Virus Sincitial Respiratorio Humano/genética , Carga Viral
9.
Signal Transduct Target Ther ; 7(1): 220, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798699

RESUMEN

COVID-19, caused by SARS-CoV-2, is the most consequential pandemic of this century. Since the outbreak in late 2019, animal models have been playing crucial roles in aiding the rapid development of vaccines/drugs for prevention and therapy, as well as understanding the pathogenesis of SARS-CoV-2 infection and immune responses of hosts. However, the current animal models have some deficits and there is an urgent need for novel models to evaluate the virulence of variants of concerns (VOC), antibody-dependent enhancement (ADE), and various comorbidities of COVID-19. This review summarizes the clinical features of COVID-19 in different populations, and the characteristics of the major animal models of SARS-CoV-2, including those naturally susceptible animals, such as non-human primates, Syrian hamster, ferret, minks, poultry, livestock, and mouse models sensitized by genetically modified, AAV/adenoviral transduced, mouse-adapted strain of SARS-CoV-2, and by engraftment of human tissues or cells. Since understanding the host receptors and proteases is essential for designing advanced genetically modified animal models, successful studies on receptors and proteases are also reviewed. Several improved alternatives for future mouse models are proposed, including the reselection of alternative receptor genes or multiple gene combinations, the use of transgenic or knock-in method, and different strains for establishing the next generation of genetically modified mice.


Asunto(s)
COVID-19 , Animales , Cricetinae , Modelos Animales de Enfermedad , Hurones , Ratones , Péptido Hidrolasas , SARS-CoV-2
10.
Cell Discov ; 8(1): 53, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668062

RESUMEN

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important target for vaccine and drug development. However, the rapid emergence of variant strains with mutated S proteins has rendered many treatments ineffective. Cleavage of the S protein by host proteases is essential for viral infection. Here, we discovered that the S protein contains two previously unidentified Cathepsin L (CTSL) cleavage sites (CS-1 and CS-2). Both sites are highly conserved among all known SARS-CoV-2 variants. Our structural studies revealed that CTSL cleavage promoted S to adopt receptor-binding domain (RBD) "up" activated conformations, facilitating receptor-binding and membrane fusion. We confirmed that CTSL cleavage is essential during infection of all emerged SARS-CoV-2 variants (including the recently emerged Omicron variant) by pseudovirus (PsV) infection experiment. Furthermore, we found CTSL-specific inhibitors not only blocked infection of PsV/live virus in cells but also reduced live virus infection of ex vivo lung tissues of both human donors and human ACE2-transgenic mice. Finally, we showed that two CTSL-specific inhibitors exhibited excellent In vivo effects to prevent live virus infection in human ACE2-transgenic mice. Our work demonstrated that inhibition of CTSL cleavage of SARS-CoV-2 S protein is a promising approach for the development of future mutation-resistant therapy.

11.
J Toxicol Pathol ; 35(1): 25-36, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35221493

RESUMEN

Lymphoma is the third most common cancer diagnosed in children, and T-cell lymphoma has the worst prognosis based on clinical observations. To date, a lymphoma model with uniform penetrance has not yet been developed. In this study, we generated a p53 deficient mouse model by targeting embryonic stem cells derived from a C57BL/6J mouse strain. Homozygous p53 deficient mice exhibited a higher rate of spontaneous tumorigenesis, with a high spontaneous occurrence rate (93.3%) of malignant lymphoma. Because tumor models with high phenotypic consistency are currently needed, we generated a lymphoma model by a single intraperitoneal injection of 37.5 or 75 mg/kg N-methyl-N-nitrosourea to p53 deficient mice. Lymphoma and retinal degeneration occurred in 100% of p53 +/- mice administered with higher concentrations of N-methyl-N-nitrosourea, a much greater response than those of previously reported models. The main anatomic sites of lymphoma were the thymus, spleen, bone marrow, and lymph nodes. Both induced and spontaneous lymphomas in the thymus and spleen stained positive for CD3 antigen, and flow cytometry detected positive CD4 and/or CD8 cells. Based on our observations and previous data, we hypothesize that mice with a B6 background are prone to lymphomagenesis.

12.
Natl Sci Rev ; 8(3): nwaa297, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34676096

RESUMEN

Receptor recognition and subsequent membrane fusion are essential for the establishment of successful infection by SARS-CoV-2. Halting these steps can cure COVID-19. Here we have identified and characterized a potent human monoclonal antibody, HB27, that blocks SARS-CoV-2 attachment to its cellular receptor at sub-nM concentrations. Remarkably, HB27 can also prevent SARS-CoV-2 membrane fusion. Consequently, a single dose of HB27 conferred effective protection against SARS-CoV-2 in two established mouse models. Rhesus macaques showed no obvious adverse events when administrated with 10 times the effective dose of HB27. Cryo-EM studies on complex of SARS-CoV-2 trimeric S with HB27 Fab reveal that three Fab fragments work synergistically to occlude SARS-CoV-2 from binding to the ACE2 receptor. Binding of the antibody also restrains any further conformational changes of the receptor binding domain, possibly interfering with progression from the prefusion to the postfusion stage. These results suggest that HB27 is a promising candidate for immuno-therapies against COVID-19.

14.
Emerg Microbes Infect ; 10(1): 1200-1208, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34044749

RESUMEN

ABSTRACTSeveral nairo-like viruses have been discovered in ticks in recent years, but their relevance to public health remains unknown. Here, we found a patient who had a history of tick bite and suffered from a febrile illness was infected with a previously discovered RNA virus, Beiji nairovirus (BJNV), in the nairo-like virus group of the order Bunyavirales. We isolated the virus by cell culture assay. BJNV could induce cytopathic effects in the baby hamster kidney and human hepatocellular carcinoma cells. Negative-stain electron microscopy revealed enveloped and spherical viral particles, morphologically similar to those of nairoviruses. We identified 67 patients as BJNV infection in 2017-2018. The median age of patients was 48 years (interquartile range 41-53 years); the median incubation period was 7 days (interquartile range 3-12 days). Most patients were men (70%), and a few (10%) had underlying diseases. Common symptoms of infected patients included fever (100%), headache (99%), depression (63%), coma (63%), and fatigue (54%), myalgia or arthralgia (45%); two (3%) patients became critically ill and one died. BJNV could cause growth retardation, viremia and histopathological changes in infected suckling mice. BJNV was also detected in sheep, cattle, and multiple tick species. These findings demonstrated that the newly discovered nairo-like virus may be associated with a febrile illness, with the potential vectors of ticks and reservoirs of sheep and cattle, highlighting its public health significance and necessity of further investigation in the tick-endemic areas worldwide.


Asunto(s)
Infecciones por Bunyaviridae/virología , Enfermedades Transmisibles Emergentes/virología , Nairovirus , Enfermedades por Picaduras de Garrapatas/virología , Adulto , Animales , Anticuerpos Antivirales/sangre , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/inmunología , Infecciones por Bunyaviridae/fisiopatología , China/epidemiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/fisiopatología , Femenino , Fiebre , Genoma Viral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Nairovirus/clasificación , Nairovirus/genética , Nairovirus/inmunología , Nairovirus/aislamiento & purificación , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/inmunología , Enfermedades por Picaduras de Garrapatas/fisiopatología , Garrapatas/virología , Viremia
15.
Emerg Microbes Infect ; 10(1): 1180-1190, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34044752

RESUMEN

Hand-foot-and-mouth disease is a contagious disease common among children under 5 years old worldwide. It is caused by strains of enterovirus, especially EV-A71, which can lead to severe disease. Vaccines are the only way to fight this disease. Accordingly, it is necessary to establish an efficient and accurate methodology to evaluate vaccine efficacy in vivo. Here, we established a practical method using a hSCARB2 knock-in mouse model, which was susceptible to EV-A71 infection at 5-6 weeks of age, to directly determine the efficacy of vaccines. Unlike traditional approaches, one-week-old hSCARB2 mice were immunized twice with a licensed vaccine, with an interval of a week. The titre of antibodies was measured after 1 week. Mice at 4 weeks of age were challenged with EV-A71 intraperitoneally and intracranially, respectively. The unimmunized hSCARB2 mice displayed systemic clinical symptoms and succumbed to the disease at a rate of approximately 50%. High viral loads were detected in the lungs, brain, and muscles, accompanied by clear pathological changes. The expression of IL-1ß, IL-13, IL-17, and TNF-α was significantly upregulated. By contrast, the immunized group was practically normal and indistinguishable from the control mice. These results indicate that the hSCARB2 knock-in mouse is susceptible to infection in adulthood, and the in vivo efficacy of EV-A71 vaccine could be directly evaluated in this mouse model. The method developed here may be used in the development of new vaccines against HFMD or quality control of licensed vaccines.


Asunto(s)
Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Proteínas de Membrana de los Lisosomas/genética , Receptores Depuradores/genética , Vacunas de Productos Inactivados/administración & dosificación , Animales , Modelos Animales de Enfermedad , Enterovirus Humano A/fisiología , Técnicas de Sustitución del Gen , Enfermedad de Boca, Mano y Pie/inmunología , Humanos , Inmunización , Ratones , Vacunas de Productos Inactivados/inmunología , Carga Viral , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
16.
Signal Transduct Target Ther ; 6(1): 134, 2021 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-33774649

RESUMEN

To discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


Asunto(s)
Antivirales/farmacología , COVID-19/metabolismo , Catepsina L , Inhibidores de Cisteína Proteinasa/farmacología , Desarrollo de Medicamentos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Adolescente , Adulto , Anciano , Animales , COVID-19/genética , Catepsina L/antagonistas & inhibidores , Catepsina L/genética , Catepsina L/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Tratamiento Farmacológico de COVID-19
18.
Nat Protoc ; 15(11): 3699-3715, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32978602

RESUMEN

Pseudotyped viruses are useful virological tools because of their safety and versatility. On the basis of a vesicular stomatitis virus (VSV) pseudotyped virus production system, we developed a pseudotyped virus-based neutralization assay against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in biosafety level 2 facilities. Compared with the binding antibody test, the neutralization assay could discriminate the protective agents from the antibody family. This protocol includes production and titration of the SARS-CoV-2 S pseudotyped virus and the neutralization assay based on it. Various types of samples targeting virus attachment and entry could be evaluated for their potency, including serum samples derived from animals and humans, monoclonal antibodies and fusion inhibitors (peptides or small molecules). If the pseudotyped virus stock has been prepared in advance, it will take 2 days to get the potency data for the candidate samples. Experience in handling cells is needed before implementing this protocol.


Asunto(s)
Anticuerpos Neutralizantes/análisis , Betacoronavirus/inmunología , Infecciones por Coronavirus/virología , Técnicas Genéticas , Neumonía Viral/virología , Animales , COVID-19 , Femenino , Células HEK293 , Humanos , Ratones , Pandemias , SARS-CoV-2
19.
Science ; 369(6510): 1505-1509, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32703908

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented public health crisis. There are no approved vaccines or therapeutics for treating COVID-19. Here we report a humanized monoclonal antibody, H014, that efficiently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 at nanomolar concentrations by engaging the spike (S) receptor binding domain (RBD). H014 administration reduced SARS-CoV-2 titers in infected lungs and prevented pulmonary pathology in a human angiotensin-converting enzyme 2 mouse model. Cryo-electron microscopy characterization of the SARS-CoV-2 S trimer in complex with the H014 Fab fragment unveiled a previously uncharacterized conformational epitope, which was only accessible when the RBD was in an open conformation. Biochemical, cellular, virological, and structural studies demonstrated that H014 prevents attachment of SARS-CoV-2 to its host cell receptors. Epitope analysis of available neutralizing antibodies against SARS-CoV and SARS-CoV-2 uncovered broad cross-protective epitopes. Our results highlight a key role for antibody-based therapeutic interventions in the treatment of COVID-19.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Anticuerpos Neutralizantes/química , Betacoronavirus/inmunología , Peptidil-Dipeptidasa A/inmunología , Receptores Virales/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/terapia , Mapeo Epitopo , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Pulmón/inmunología , Ratones , Pandemias , Neumonía Viral/terapia , Dominios Proteicos , Multimerización de Proteína , SARS-CoV-2 , Células Vero
20.
Biomed Res Int ; 2020: 9680474, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32596401

RESUMEN

BACKGROUND: Animal tissues and tissue-derived biomaterials are widely used in the field of xenotransplantation and regenerative medicine. A potential immunogenic risk that affects the safety and effectiveness of xenografts is the presence of remnant α-Gal antigen (synthesized by GGTA1 or/and iGb3S). GGTA1 knockout mice have been developed as a suitable model for the analysis of anti-Gal antibody-mediated immunogenicity. However, we are yet to establish whether GGTA1/iGb3S double knockout (G/i DKO) mice are sensitive to Gal antigen-positive xenoimplants. METHODS: α-Gal antigen expression in the main organs of G/i DKO mice or bovine bone substitutes was detected via a standardized ELISA inhibition assay. Serum anti-α-Gal antibody titers of G/i DKO mice after immunization with rabbit red blood cells (RRBC) and implantation of raw lyophilized bone substitutes (Gal antigen content was 8.14 ± 3.17 × 1012/mg) or Guanhao Biotech bone substitutes (50% decrease in Gal antigen relative to the raw material) were assessed. The evaluation of total serum antibody, inflammatory cytokine, and splenic lymphocyte subtype populations and the histological analysis of implants and thymus were performed to systematically assess the immune response caused by bovine bone substitutes and bone substitute grafts in G/i DKO mice. RESULTS: α-Gal epitope expression was reduced by 100% in the main organs of G/i DKO mice, compared with their wild-type counterparts. Following immunization with RRBC, serum anti-Gal antibody titers of G/i DKO mice increased from 80- to 180-fold. After subcutaneous implantation of raw lyophilized bone substitutes and Guanhao Biotech bone substitutes into G/i DKO mice, specific anti-α-Gal IgG, anti-α-Gal IgM, and related inflammatory factors (IFN-γ and IL-6) were significantly increased in the raw lyophilized bone substitute group but showed limited changes in the Guanhao Biotech bone substitute group, compared with the control. CONCLUSION: G/i DKO mice are sensitive to Gal antigen-positive xenogeneic grafts and can be effectively utilized for evaluating the α-Gal-mediated immunogenic risk of xenogeneic grafts.


Asunto(s)
Matriz Ósea , Galactosiltransferasas/genética , Xenoinjertos/inmunología , Trasplante Heterólogo , Animales , Matriz Ósea/inmunología , Matriz Ósea/trasplante , Sustitutos de Huesos , Bovinos , Eritrocitos/inmunología , Galactosiltransferasas/metabolismo , Ratones , Ratones Noqueados , Conejos , alfa-Galactosidasa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA