Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Curr Med Sci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990448

RESUMEN

OBJECTIVE: To determine the factors that contribute to the survival of elderly individuals diagnosed with brain glioma and develop a prognostic nomogram. METHODS: Data from elderly individuals (age ≥65 years) histologically diagnosed with brain glioma were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. The dataset was randomly divided into a training cohort and an internal validation cohort at a 6:4 ratio. Additionally, data obtained from Tangdu Hospital constituted an external validation cohort for the study. The identification of independent prognostic factors was achieved through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis, enabling the construction of a nomogram. Model performance was evaluated using C-index, ROC curves, calibration plot and decision curve analysis (DCA). RESULTS: A cohort of 20 483 elderly glioma patients was selected from the SEER database. Five prognostic factors (age, marital status, histological type, stage, and treatment) were found to significantly impact overall survival (OS) and cancer-specific survival (CSS), with tumor location emerging as a sixth variable independently linked to CSS. Subsequently, nomogram models were developed to predict the probabilities of survival at 6, 12, and 24 months. The assessment findings from the validation queue indicate a that the model exhibited strong performance. CONCLUSION: Our nomograms serve as valuable prognostic tools for assessing the survival probability of elderly glioma patients. They can potentially assist in risk stratification and clinical decision-making.

2.
World J Oncol ; 15(4): 579-591, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38993248

RESUMEN

Background: Lymph node status is a prominent prognostic factor for intrahepatic cholangiocarcinoma (ICC). However, the prognostic value of performing lymph node dissection (LND) in patients with clinical node-negative ICC remains controversial. The aim of this study was to evaluate the clinical value of LND on long-term outcomes in this subgroup of patients. Methods: We retrospectively analyzed patients who underwent radical liver resection for clinically node-negative ICC from three tertiary hepatobiliary centers. The propensity score matching analysis at 1:1 ratio based on clinicopathological data was conducted between patients with and without LND. Recurrence-free survival (RFS) and overall survival (OS) were compared in the matched cohort. Results: Among 303 patients who underwent radical liver resection for ICC, 48 patients with clinically positive nodes were excluded, and a total of 159 clinically node-negative ICC patients were finally eligible for the study, with 102 in the LND group and 57 in the non-LND group. After propensity score matching, two well-balanced groups of 51 patients each were analyzed. No significant difference of median RFS (12.0 vs. 10.0 months, P = 0.37) and median OS (22.0 vs. 26.0 months, P = 0.47) was observed between the LND and non-LND group. Also, LND was not identified as one of the independent risks for survival. Among 51 patients who received LND, 11 patients were with positive lymph nodes (lymph node metastasis (LNM) (+)) and presented significantly worse outcomes than those with LND (-). On the other hand, postoperative adjuvant therapy was the independent risk factor for both RFS (hazard ratio (HR): 0.623, 95% confidence interval (CI): 0.393 - 0.987, P = 0.044) and OS (HR: 0.585, 95% CI: 0.359 - 0.952, P = 0.031). Furthermore, postoperative adjuvant therapy was associated with prolonged survivals of non-LND patients (P = 0.02 for RFS and P = 0.03 for OS). Conclusions: Based on the data, we found that LND did not significantly improve the prognosis of patients with clinically node-negative ICC. Postoperative adjuvant therapy was associated with prolonged survival of ICC patients, especially in non-LND individuals.

3.
ACS Nano ; 18(25): 16236-16247, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38868857

RESUMEN

Retina-inspired visual sensors play a crucial role in the realization of neuromorphic visual systems. Nevertheless, significant obstacles persist in the pursuit of achieving bidirectional synaptic behavior and attaining high performance in the context of photostimulation. In this study, we propose a reconfigurable all-optical controlled synaptic device based on the IGZO/SnO/SnS heterostructure, which integrates sensing, storage and processing functions. Relying on the simple heterojunction stack structure and the role of energy band engineering, synaptic excitatory and inhibitory behaviors can be observed under the light stimulation of ultraviolet (266 nm) and visible light (405, 520 and 658 nm) without additional voltage modulation. In particular, junction field-effect transistors based on the IGZO/SnO/SnS heterostructure were fabricated to elucidate the underlying bidirectional photoresponse mechanism. In addition to optical signal processing, an artificial neural network simulator based on the optoelectrical synapse was trained and recognized handwritten numerals with a recognition rate of 91%. Furthermore, we prepared an 8 × 8 optoelectrical synaptic array and successfully demonstrated the process of perception and memory for image recognition in the human brain, as well as simulated the situation of damage to the retina by ultraviolet light. This work provides an effective strategy for the development of high-performance all-optical controlled optoelectronic synapses and a practical approach to the design of multifunctional artificial neural vision systems.

4.
Mol Med Rep ; 30(2)2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38873983

RESUMEN

Chronic obstructive pulmonary disease (COPD) exacerbations accelerate loss of lung function and increased mortality. The complex nature of COPD presents challenges in accurately predicting and understanding frequent exacerbations. The present study aimed to assess the metabolic characteristics of the frequent exacerbation of COPD (COPD­FE) phenotype, identify potential metabolic biomarkers associated with COPD­FE risk and evaluate the underlying pathogenic mechanisms. An internal cohort of 30 stable patients with COPD was recruited. A widely targeted metabolomics approach was used to detect and compare serum metabolite expression profiles between patients with COPD­FE and patients with non­frequent exacerbation of COPD (COPD­NE). Bioinformatics analysis was used for pathway enrichment analysis of the identified metabolites. Spearman's correlation analysis assessed the associations between metabolites and clinical indicators, while receiver operating characteristic (ROC) analysis evaluated the ability of metabolites to distinguish between two groups. An external cohort of 20 patients with COPD validated findings from the internal cohort. Out of the 484 detected metabolites, 25 exhibited significant differences between COPD­FE and COPD­NE. Metabolomic analysis revealed differences in lipid, energy, amino acid and immunity pathways. Spearman's correlation analysis demonstrated associations between metabolites and clinical indicators of acute exacerbation risk. ROC analysis demonstrated that the area under the curve (AUC) values for D­fructose 1,6­bisphosphate (AUC=0.871), arginine (AUC=0.836), L­2­hydroxyglutarate (L­2HG; AUC=0.849), diacylglycerol (DG) (16:0/20:5) (AUC=0.827), DG (16:0/20:4) (AUC=0.818) and carnitine­C18:2 (AUC=0.804) were >0.8, highlighting their discriminative capacity between the two groups. External validation results demonstrated that DG (16:0/20:5), DG (16:0/20:4), carnitine­C18:2 and L­2HG were significantly different between patients with COPD­FE and those with COPD­NE. In conclusion, the present study offers insights into early identification, mechanistic understanding and personalized management of the COPD­FE phenotype.


Asunto(s)
Biomarcadores , Metabolómica , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/sangre , Masculino , Femenino , Metabolómica/métodos , Anciano , Biomarcadores/sangre , Persona de Mediana Edad , Curva ROC , Metaboloma , Progresión de la Enfermedad , Carnitina/sangre , Carnitina/análogos & derivados
5.
Appl Environ Microbiol ; : e0208223, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899886

RESUMEN

Genetic engineering at the genomic scale provides a rapid means to evolve microbes for desirable traits. However, in many filamentous fungi, such trials are daunted by low transformation efficiency. Differentially expressed genes under certain conditions may contain important regulatory factors. Accordingly, although manipulating these subsets of genes only can largely reduce the time and labor, engineering at such a sub-genomic level may also be able to improve the microbial performance. Herein, first using the industrially important cellulase-producing filamentous fungus Trichoderma reesei as a model organism, we constructed suppression subtractive hybridization (SSH) libraries enriched with differentially expressed genes under cellulase induction (MM-Avicel) and cellulase repression conditions (MM-Glucose). The libraries, in combination with RNA interference, enabled sub-genomic engineering of T. reesei for enhanced cellulase production. The ability of T. reesei to produce endoglucanase was improved by 2.8~3.3-fold. In addition, novel regulatory genes (tre49304, tre120391, and tre123541) were identified to affect cellulase expression in T. reesei. Iterative manipulation using the same strategy further increased the yield of endoglucanase activity to 75.6 U/mL, which was seven times as high as that of the wild type (10.8 U/mL). Moreover, using Humicola insolens as an example, such a sub-genomic RNAi-assisted strain evolution proved to be also useful in other industrially important filamentous fungi. H. insolens is a filamentous fungus commonly used to produce catalase, albeit with similarly low transformation efficiency and scarce knowledge underlying the regulation of catalase expression. By combining SSH and RNAi, a strain of H. insolens producing 28,500 ± 288 U/mL of catalase was obtained, which was 1.9 times as high as that of the parent strain.IMPORTANCEGenetic engineering at the genomic scale provides an unparalleled advantage in microbial strain improvement, which has previously been limited only to the organisms with high transformation efficiency such as Saccharomyces cerevisiae and Escherichia coli. Herein, using the filamentous fungus Trichoderma reesei as a model organism, we demonstrated that the advantage of suppression subtractive hybridization (SSH) to enrich differentially expressed genes and the convenience of RNA interference to manipulate a multitude of genes could be combined to overcome the inadequate transformation efficiency. With this sub-genomic evolution strategy, T. reesei could be iteratively engineered for higher cellulase production. Intriguingly, Humicola insolens, a fungus with even little knowledge in gene expression regulation, was also improved for catalase production. The same strategy may also be expanded to engineering other microorganisms for enhanced production of proteins, organic acids, and secondary metabolites.

6.
Comput Methods Programs Biomed ; 254: 108252, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38843572

RESUMEN

BACKGROUND AND OBJECTIVE: Hepatocellular carcinoma is a common disease with high mortality. Through deep learning methods to analyze HCC CT, the screening classification and prognosis model of HCC can be established, which further promotes the development of computer-aided diagnosis and treatment in the treatment of HCC. However, there are significant challenges in the actual establishment of HCC auxiliary diagnosis model due to data imbalance, especially for rare subtypes of HCC and underrepresented demographic groups. This study proposes a GAN model aimed at overcoming these obstacles and improving the accuracy of HCC auxiliary diagnosis. METHODS: In order to generate liver and tumor images close to the real distribution. Firstly, we construct a new gradient transfer sampling module to improve the lack of texture details and excessive gradient transfer parameters of the deep model; Secondly, we construct an attention module with spatial and cross-channel feature extraction ability to improve the discriminator's ability to distinguish images; Finally, we design a new loss function for liver tumor imaging features to constrain the model to approach the real tumor features in iterations. RESULTS: In qualitative analysis, the images synthetic by our method closely resemble the real images in liver parenchyma, blood vessels, tumors, and other parts. In quantitative analysis, the optimal results of FID, PSNR, and SSIM are 75.73, 22.77, and 0.74, respectively. Furthermore, our experiments establish classification models for imbalanced data and enhanced data, resulting in an increase in accuracy rate by 21%-34%, an increase in AUC by 0.29 - 0.33, and an increase in specificity to 0.89. CONCLUSION: Our solution provides a variety of training data sources with low cost and high efficiency for the establishment of classification or prognostic models for imbalanced data.

7.
Gastrointest Endosc ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851456

RESUMEN

BACKGROUND AND AIMS: Despite the benefits of artificial intelligence (AI) in small bowel (SB) capsule endoscopy (CE) image reading, information on its application in the stomach and SB CE is lacking. METHODS: In this multicenter, retrospective diagnostic study, gastric imaging data were added to the deep learning (DL)-based SmartScan (SS), which has been described previously. A total of 1,069 magnetically controlled gastrointestinal (GI) CE examinations (comprising 2,672,542 gastric images) were used in the training phase for recognizing gastric pathologies, producing a new AI algorithm named SS Plus. 342 fully automated, magnetically controlled CE (FAMCE) examinations were included in the validation phase. The performance of both senior and junior endoscopists with both the SS Plus-Assisted Reading (SSP-AR) and conventional reading (CR) modes was assessed. RESULTS: SS Plus was designed to recognize 5 types of gastric lesions and 17 types of SB lesions. SS Plus reduced the number of CE images required for review to 873.90 (1000) (median, IQR 814.50-1,000) versus 44,322.73 (42,393) (median, IQR 31,722.75-54,971.25) for CR. Furthermore, with SSP-AR, endoscopists took 9.54 min (8.51) (median, IQR 6.05-13.13) to complete the CE video reading. In the 342 CE videos, SS Plus identified 411 gastric and 422 SB lesions, whereas 400 gastric and 368 intestinal lesions were detected with CR. Moreover, junior endoscopists remarkably improved their CE image reading ability with SSP-AR. CONCLUSIONS: Our study shows that the newly upgraded DL-based algorithm SS Plus can detect GI lesions and help improve the diagnostic performance of junior endoscopists in interpreting CE videos.

8.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891992

RESUMEN

Class III peroxidases (CIII PRXs) are plant-specific enzymes with high activity that play key roles in the catalysis of oxidation-reduction reactions. In plants, CIII PRXs can reduce hydrogen peroxide to catalyze oxidation-reduction reactions, thereby affecting plant growth, development, and stress responses. To date, no systematic analysis of the CIII PRX gene family in litchi (Litchi chinensis Sonn.) has been documented, although the genome has been reported. In this study, a total of 77 CIII PRX (designated LcPRX) gene family members were predicted in the litchi genome to provide a reference for candidate genes in the responses to abiotic stresses during litchi growth and development. All of these LcPRX genes had different numbers of highly conserved PRX domains and were unevenly distributed across fifteen chromosomes. They were further clustered into eight clades using a phylogenetic tree, and almost every clade had its own unique gene structure and motif distribution. Collinearity analysis confirmed that there were eleven pairs of duplicate genes among the LcPRX members, and segmental duplication (SD) was the main driving force behind the LcPRX gene expansion. Tissue-specific expression profiles indicated that the expression levels of all the LcPRX family members in different tissues of the litchi tree were significantly divergent. After different abiotic stress treatments, quantitative real-time PCR (qRT-PCR) analysis revealed that the LcPRX genes responded to various stresses and displayed differential expression patterns. Physicochemical properties, transmembrane domains, subcellular localization, secondary structures, and cis-acting elements were also analyzed. These findings provide insights into the characteristics of the LcPRX gene family and give valuable information for further elucidating its molecular function and then enhancing abiotic stress tolerance in litchi through molecular breeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Litchi , Familia de Multigenes , Filogenia , Estrés Fisiológico , Litchi/genética , Litchi/metabolismo , Litchi/enzimología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Peroxidasas/genética , Peroxidasas/metabolismo , Perfilación de la Expresión Génica
10.
Opt Express ; 32(9): 14953-14962, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859158

RESUMEN

In this work, we hybridize an air cavity reflector and a nanopatterned sapphire substrate (NPSS) for making an inclined-sidewall-shaped deep ultraviolet micro light-emitting diode (DUV micro-LED) array to enhance the light extraction efficiency (LEE). A cost-effective hybrid photolithography process involving positive and negative photoresist (PR) is explored to fabricate air-cavity reflectors. The experimental results demonstrate a 9.88% increase in the optical power for the DUV micro-LED array with a bottom air-cavity reflector when compared with the conventional DUV micro-LED array with only a sidewall metal reflector. The bottom air-cavity reflector significantly contributes to the reduction of the light absorption and provides more escape paths for light, which in turn increases the LEE. Our investigations also report that such a designed air-cavity reflector exhibits a more pronounced impact on small-size micro-LED arrays, because more photons can propagate into escape cones by experiencing fewer scattering events from the air-cavity structure. Furthermore, the NPSS can enlarge the escape cone and serve as scattering centers to eliminate the waveguiding effect, which further enables the improved LEE for the DUV micro-LED array with an air-cavity reflector.

11.
Int J Biol Macromol ; 275(Pt 1): 133403, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917926

RESUMEN

Nasopharyngeal carcinoma (NPC), a malignant cancer originating from the epithelial cells of the nasopharynx, presents diagnostic challenges with current methods such as plasma Epstein-Barr virus (EBV) DNA testing showing limited efficacy. This study focused on identifying small extracellular vesicle (sEV) proteins as potential noninvasive biomarkers to enhance NPC diagnostic accuracy. We isolated sEVs from plasma and utilized 4D label-free proteomics to identify differentially expressed proteins (DEPs) among healthy controls (NC = 10), early-stage NPC (E-NPC = 10), and late-stage NPC (L-NPC = 10). Eighteen sEV proteins were identified as potential biomarkers. Subsequently, parallel reaction monitoring (PRM) proteomic analysis preliminarily confirmed sEV carbonic anhydrase 1 (CA1) as a highly promising biomarker for NPC, particularly in early-stage diagnosis (NC = 15; E-NPC = 10; L-NPC = 15). To facilitate this, we developed an automated, high-throughput and highly sensitive CA1 immune-chemiluminescence chip technology characterized by a broad linear detection range and robust controls. Further validation in an independent retrospective cohort (NC = 89; E-NPC = 39; L-NPC = 172) using this technology confirmed sEV CA1 as a reliable diagnostic biomarker for NPC (AUC = 0.9809) and E-NPC (AUC = 0.9893), independent of EBV-DNA testing. Notably, sEV CA1 exhibited superior diagnostic performance compared to EBV-DNA, with a significant incremental net reclassification improvement of 27.61 % for NPC and 72.11 % for E-NPC detection. Thus, this study identifies sEV CA1 as an innovative diagnostic biomarker for NPC and E-NPC independent of EBV-DNA. Additionally, it establishes an immune-chemiluminescence chip technology for the detection of sEV CA1 protein, paving the way for further validation and clinical application.

12.
Environ Sci Technol ; 58(19): 8404-8416, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38698567

RESUMEN

In densely populated urban areas, PM2.5 has a direct impact on the health and quality of residents' life. Thus, understanding the disparities of PM2.5 is crucial for ensuring urban sustainability and public health. Traditional prediction models often overlook the spillover effects within urban areas and the complexity of the data, leading to inaccurate spatial predictions of PM2.5. We propose Deep Support Vector Regression (DSVR) that models the urban areas as a graph, with grid center points as the nodes and the connections between grids as the edges. Nature and human activity features of each grid are initialized as the representation of each node. Based on the graph, DSVR uses random diffusion-based deep learning to quantify the spillover effects of PM2.5. It leverages random walk to uncover more extensive spillover relationships between nodes, thereby capturing both the local and nonlocal spillover effects of PM2.5. And then it engages in predictive learning using the feature vectors that encapsulate spillover effects, enhancing the understanding of PM2.5 disparities and connections across different regions. By applying our proposed model in the northern region of New York for predictive performance analysis, we found that DSVR consistently outperforms other models. During periods of PM2.5 surges, the R-square of DSVR reaches as high as 0.729, outperforming non-spillover models by 2.5 to 5.7 times and traditional spatial metric models by 2.2 to 4.6 times. Therefore, our proposed model holds significant importance for understanding disparities of PM2.5 air pollution in urban areas, taking the first steps toward a new method that considers both the spillover effects and nonlinear feature of data for prediction.


Asunto(s)
Contaminación del Aire , Material Particulado , Máquina de Vectores de Soporte , Humanos , Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente
13.
BMC Psychol ; 12(1): 272, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750584

RESUMEN

BACKGROUND: Patient safety culture is an integral part of healthcare delivery both in Ghana and globally. Therefore, understanding how frontline health workers perceive patient safety culture and the factors that influence it is very important. This qualitative study examined the health workers' perceptions of patient safety culture in selected regional hospitals in Ghana. OBJECTIVE: This study aimed to provide a voice concerning how frontline health workers perceive patient safety culture and explain the major barriers in ensuring it. METHOD: In-depth semi-structured interviews were conducted with 42 health professionals in two regional government hospitals in Ghana from March to June 2022. Participants were purposively selected and included medical doctors, nurses, pharmacists, administrators, and clinical service staff members. The inclusion criteria were one or more years of clinical experience. Interviews were recorded and transcribed. Thematic analysis was used to identify themes. RESULT: The health professionals interviewed were 38% male and 62% female, of whom 54% were nurses, 4% were midwives, 28% were medical doctors; lab technicians, pharmacists, and human resources workers represented 2% each; and 4% were critical health nurses. Among them, 64% held a diploma and 36% held a degree or above. This study identified four main areas: general knowledge of patient safety culture, guidelines and procedures, attitudes of frontline health workers, and upgrading patient safety culture. CONCLUSIONS: This qualitative study presents a few areas for improvement in patient safety culture. Despite their positive attitudes and knowledge of patient safety, healthcare workers expressed concerns about the implementation of patient safety policies outlined by hospitals. Healthcare professionals perceived that curriculum training on patient safety during school education and the availability of dedicated officers for patient safety at their facilities may help improve patient safety.


Asunto(s)
Actitud del Personal de Salud , Seguridad del Paciente , Investigación Cualitativa , Humanos , Ghana , Femenino , Masculino , Adulto , Personal de Salud/psicología , Cultura Organizacional , Administración de la Seguridad/organización & administración , Hospitales , Conocimientos, Actitudes y Práctica en Salud , Persona de Mediana Edad
14.
Angew Chem Int Ed Engl ; 63(29): e202406767, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682392

RESUMEN

Cyclic sulfones have demonstrated important applications in drug discovery. However, the catalytic and enantioselective synthesis of chiral cyclic sulfones remains challenging. Herein, we develop nickel-catalyzed regiodivergent and enantioselective hydroalkylation of sulfolenes to streamline the synthesis of chiral alkyl cyclic sulfones. The method has broad scope and high functional group tolerance. The regioselectivity can be controlled by ligands only. A neutral PYROX ligand favors C3-alkylation whereas an anionic BOX ligand favors C2-alkylation. This control is kinetic in origin as the C2-bound Ni intermediates are always thermodynamically more stable. Reactivity study of a wide range of relevant Ni intermediates reveal a NiI/NiIII catalytic cycle with a NiII-H species as the resting state. The regio- and enantio-determining step is the insertion of this NiII-H species into 2-sulfolene. This work provides an efficient catalytic method for the synthesis of an important class of organic compounds and enhances the mechanistic understanding of Ni-catalyzed stereoselective hydroalkylation.

15.
ACS Nano ; 18(15): 10609-10617, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569090

RESUMEN

Controlling interfacial reactions is critical for zinc oxide (ZnO)-based inverted perovskite light-emitting diodes (PeLEDs), boosting the external quantum efficiency (EQE) of the near-infrared device to above 20%. However, violent interfacial reactions between the bromine-based perovskites and ZnO-based films severely limit the performance of inverted green PeLEDs, whose efficiency and stability lag far behind those of their near-infrared counterparts. Here, a controllable interfacial amidation between the bromine-based perovskites and magnesium-doped ZnO (ZnMgO) film utilizing caprylyl sulfobetaine (SFB) is realized. The SFB molecules strongly interact with formamidinium bromide, decelerating the amidation reaction between formamidinium and carboxylate groups on the ZnMgO film, thus regulating the crystallization of FAPbBr3. Combined with the passivation of benzylamine, a FAPbBr3 bulk film directly deposited on a ZnMgO substrate with single-crystal characteristics is obtained, exhibiting a high photoluminescence quantum yield of above 80%. The resultant PeLEDs demonstrate a peak EQE of exceeding 20% at a high luminance of 120,000 cd m-2 and a half lifetime of 26 min at 11,000 cd m-2, representing the state-of-the-art inverted green electroluminescence. This work resolves the crucial issues of violent interfacial reactions and provides a strategy toward inverted green PeLEDs with outstanding performance.

16.
Biomolecules ; 14(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38672421

RESUMEN

Captivity is an important and efficient technique for rescuing endangered species. However, it induces infertility, and the underlying mechanism remains obscure. This study used the plateau pika (Ochotona curzoniae) as a model to integrate physiological, metagenomic, metabolomic, and transcriptome analyses and explore whether dysbiosis of the gut microbiota induced by artificial food exacerbates infertility in captive wild animals. Results revealed that captivity significantly decreased testosterone levels and the testicle weight/body weight ratio. RNA sequencing revealed abnormal gene expression profiles in the testicles of captive animals. The microbial α-diversity and Firmicutes/Bacteroidetes ratio were drastically decreased in the captivity group. Bacteroidetes and Muribaculaceae abundance notably increased in captive pikas. Metagenomic analysis revealed that the alteration of flora increased the capacity for carbohydrate degradation in captivity. The levels of microbe metabolites' short-chain fatty acids (SCFAs) were significantly high in the captive group. Increasing SCFAs influenced the immune response of captivity plateau pikas; pro-inflammatory cytokines were upregulated in captivity. The inflammation ultimately contributed to male infertility. In addition, a positive correlation was observed between Gastranaerophilales family abundance and testosterone concentration. Our results provide evidence for the interactions between artificial food, the gut microbiota, and male infertility in pikas and benefit the application of gut microbiota interference in threatened and endangered species.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Infertilidad Masculina , Lagomorpha , Testosterona , Animales , Masculino , Disbiosis/microbiología , Disbiosis/metabolismo , Infertilidad Masculina/microbiología , Infertilidad Masculina/metabolismo , Testosterona/metabolismo , Lagomorpha/microbiología , Testículo/microbiología , Testículo/metabolismo , Ácidos Grasos Volátiles/metabolismo
17.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1102-1119, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658152

RESUMEN

HSP70 protein, as an important member of the heat shock protein (HSP) family, plays an important role in plant growth, development, and response to biotic and abiotic stresses. In order to explore the role of HSP70 gene family members in Litchi chinensis under low temperature, high temperature, drought, and salt stress, bioinformatics methods were used to identify the HSP70 gene family members within the entire L. chinensis genome. The expression of these genes under various abiotic stresses was then detected using quantitative real-time PCR (qRT-PCR). The results showed that the LcHSP70 gene family consisted of 18 members, which were unevenly distributed across ten L. chinensis chromosomes. The LcHSP70 protein contained 479-851 amino acids, with isoelectric points ranging from 5.07 to 6.95, and molecular weights from 52.44 kDa to 94.07 kDa. The predicted subcellular localization showed that LcHSP70 protein was present in the nucleus, cytoplasm, endoplasmic reticulum, mitochondria, and chloroplast. Phylogenetic analysis divided the LcHSP70 proteins into five subgroups, namely Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅵ. The promoter regions of the LcHSP70 genes contained various cis-acting elements related to plant growth, development, hormone response, and stress response. Moreover, the expression of LcHSP70 genes displayed distint tissue-specific expression level, categorized into universal expression and specific expression. From the selected 6 LcHSP70 genes (i.e., LcHSP70-1, LcHSP70-5, LcHSP70-10, LcHSP70-14, LcHSP70-16, and LcHSP70-18), their relative expression levels were assessed under different abiotic stresses using qRT-PCR. The results indicated that the gene family members exhibited diverse responses to low temperature, high temperature, drought, and salt stress, with significant variations in their expression levels across different time periods. These results provide a foundation for further exploration of the function of the LcHSP70 gene family.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas HSP70 de Choque Térmico , Litchi , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Litchi/genética , Litchi/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/biosíntesis , Familia de Multigenes , Estrés Salino/genética
18.
Sci Rep ; 14(1): 8106, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582913

RESUMEN

Wheat head detection and counting using deep learning techniques has gained considerable attention in precision agriculture applications such as wheat growth monitoring, yield estimation, and resource allocation. However, the accurate detection of small and dense wheat heads remains challenging due to the inherent variations in their size, orientation, appearance, aspect ratios, density, and the complexity of imaging conditions. To address these challenges, we propose a novel approach called the Oriented Feature Pyramid Network (OFPN) that focuses on detecting rotated wheat heads by utilizing oriented bounding boxes. In order to facilitate the development and evaluation of our proposed method, we introduce a novel dataset named the Rotated Global Wheat Head Dataset (RGWHD). This dataset is constructed by manually annotating images from the Global Wheat Head Detection (GWHD) dataset with oriented bounding boxes. Furthermore, we incorporate a Path-aggregation and Balanced Feature Pyramid Network into our architecture to effectively extract both semantic and positional information from the input images. This is achieved by leveraging feature fusion techniques at multiple scales, enhancing the detection capabilities for small wheat heads. To improve the localization and detection accuracy of dense and overlapping wheat heads, we employ the Soft-NMS algorithm to filter the proposed bounding boxes. Experimental results indicate the superior performance of the OFPN model, achieving a remarkable mean average precision of 85.77% in oriented wheat head detection, surpassing six other state-of-the-art models. Moreover, we observe a substantial improvement in the accuracy of wheat head counting, with an accuracy of 93.97%. This represents an increase of 3.12% compared to the Faster R-CNN method. Both qualitative and quantitative results demonstrate the effectiveness of the proposed OFPN model in accurately localizing and counting wheat heads within various challenging scenarios.


Asunto(s)
Agricultura , Triticum , Algoritmos , Tractos Piramidales , Asignación de Recursos
19.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38610323

RESUMEN

The mature processes of metal oxide semiconductors (MOS) have attracted considerable interest. However, the low sensitivity of metal oxide semiconductor gas sensors is still challenging, and constrains its practical applications. Bimetallic nanoparticles are of interest owing to their excellent catalytic properties. This excellent feature of bimetallic nanoparticles can solve the problems existing in MOS gas sensors, such as the low response, high operating temperature and slow response time. To enhance acetone sensing performance, we successfully synthesized Au-Pd/ZnO nanorods. In this work, we discovered that Au-Pd nanoparticles modified on ZnO nanorods can remarkably enhance sensor response. The Au-Pd/ZnO gas sensor has long-term stability and an excellent response/recovery process. This excellent sensing performance is attributed to the synergistic catalytic effect of bimetallic AuPd nanoparticles. Moreover, the electronic and chemical sensitization of noble metals also makes a great contribution. This work presents a simple method for preparing Au-Pd/ZnO nanorods and provides a new solution for the detection of acetone based on metal oxide semiconductor.

20.
ACS Appl Mater Interfaces ; 16(15): 19742-19750, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563423

RESUMEN

Perovskites have great potential for optoelectronic applications due to their high photoluminescence quantum yield, large absorption coefficient, great defect tolerance, and adjustable band gap. Perovskite heterostructures may further enhance the performance of optoelectronic devices. So far, however, most of perovskite heterostructures are fabricated by mechanical stacking or spin coating, which could introduce a large number of defects or impurities at the heterointerface owing to the random stacking process. Herein, we report the epitaxial growth of CsPbBr3 pyramids/CdS nanobelt heterostructures via a 2-step vapor deposition route. The CsPbBr3 triangular pyramids are well aligned on the surface of CdS nanobelts with the epitaxial relationships of (0-22)CsPbBr3||(1-20)CdS and (-211)CsPbBr3||(002)CdS. Time-resolved photoluminescence results reveal that effective charge transfer occurred at the heterointerface, which can be attributed to the type-II band arrangement. Theoretical simulations reveal that the unique CsPbBr3 pyramids/CdS nanobelt structure facilitates diminishing the reflection losses and enhancing the light absorption. The photodetector based on these CsPbBr3 pyramids/CdS nanobelt heterostructures exhibited an ultrahigh photoswitching ratio of 2.14 × 105, a high responsivity up to 4.07 × 104 A/W, a high detectivity reaching 1.36 × 1013 Jones, fast photoresponses (τrise = 472 µs and τdecay = 894 µs), low dark current, and suppressed hysteresis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...