Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 147, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769583

RESUMEN

A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Mitocondrias/metabolismo , Microambiente Tumoral , Animales , Nanotubos
2.
Nat Sci Sleep ; 16: 413-428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699466

RESUMEN

Objective: Obstructive sleep apnea (OSA) is a common and potentially fatal sleep disorder. The purpose of this study was to construct an objective and easy-to-promote model based on common clinical biochemical indicators and demographic data for OSA screening. Methods: The study collected the clinical data of patients who were referred to the Sleep Medicine Center of the Second Affiliated Hospital of Fujian Medical University from December 1, 2020, to July 31, 2023, including data for demographics, polysomnography (PSG), and 30 biochemical indicators. Univariate and multivariate analyses were performed to compare the differences between groups, and the Boruta method was used to analyze the importance of the predictors. We selected and compared 10 predictors using 4 machine learning algorithms which were "Gaussian Naive Bayes (GNB)", "Support Vector Machine (SVM)", "K Neighbors Classifier (KNN)", and "Logistic Regression (LR)". Finally, the optimal algorithm was selected to construct the final prediction model. Results: Among all the predictors of OSA, body mass index (BMI) showed the best predictive efficacy with an area under the receiver operating characteristic curve (AUC) = 0.699; among the predictors of biochemical indicators, triglyceride-glucose (TyG) index represented the best predictive performance (AUC = 0.656). The LR algorithm outperformed the 4 established machine learning (ML) algorithms, with an AUC (F1 score) of 0.794 (0.841), 0.777 (0.827), and 0.732 (0.788) in the training, validation, and testing cohorts, respectively. Conclusion: We have constructed an efficient OSA screening tool. The introduction of biochemical indicators in ML-based prediction models can provide a reference for clinicians in determining whether patients with suspected OSA need PSG.

3.
J Exp Clin Cancer Res ; 43(1): 122, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654320

RESUMEN

BACKGROUND: Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS: RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS: We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS: These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.


Asunto(s)
Carcinoma Nasofaríngeo , Recombinasa Rad51 , Tolerancia a Radiación , Reparación del ADN por Recombinación , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Ratones , Animales , Tolerancia a Radiación/genética , ARN Circular/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Línea Celular Tumoral , Femenino , Masculino , Pronóstico , Ratones Desnudos
4.
Adv Sci (Weinh) ; 11(12): e2306515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38229179

RESUMEN

In South and Southeast Asia, the habit of chewing betel nuts is prevalent, which leads to oral submucous fibrosis (OSF). OSF is a well-established precancerous lesion, and a portion of OSF cases eventually progress to oral squamous cell carcinoma (OSCC). However, the specific molecular mechanisms underlying the malignant transformation of OSCC from OSF are poorly understood. In this study, the leading-edge techniques of Spatial Transcriptomics (ST) and Spatial Metabolomics (SM) are integrated to obtain spatial location information of cancer cells, fibroblasts, and immune cells, as well as the transcriptomic and metabolomic landscapes in OSF-derived OSCC tissues. This work reveals for the first time that some OSF-derived OSCC cells undergo partial epithelial-mesenchymal transition (pEMT) within the in situ carcinoma (ISC) region, eventually acquiring fibroblast-like phenotypes and participating in collagen deposition. Complex interactions among epithelial cells, fibroblasts, and immune cells in the tumor microenvironment are demonstrated. Most importantly, significant metabolic reprogramming in OSF-derived OSCC, including abnormal polyamine metabolism, potentially playing a pivotal role in promoting tumorigenesis and immune evasion is discovered. The ST and SM data in this study shed new light on deciphering the mechanisms of OSF-derived OSCC. The work also offers invaluable clues for the prevention and treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Fibrosis de la Submucosa Bucal , Humanos , Fibrosis de la Submucosa Bucal/genética , Fibrosis de la Submucosa Bucal/metabolismo , Fibrosis de la Submucosa Bucal/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Transcriptoma , Microambiente Tumoral , Transformación Celular Neoplásica , Perfilación de la Expresión Génica
5.
Sci China Life Sci ; 67(5): 940-957, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38212458

RESUMEN

Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.


Asunto(s)
Moléculas de Adhesión Celular , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Moléculas de Adhesión Celular/metabolismo , Terapia Molecular Dirigida/métodos , Animales , Neovascularización Patológica/metabolismo , Transducción de Señal , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
6.
Cell Oncol (Dordr) ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170381

RESUMEN

BACKGROUND: Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION: This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.

7.
Methods ; 222: 100-111, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228196

RESUMEN

BACKGROUND: Breast cancer (BC), the most common form of malignant cancer affecting women worldwide, was characterized by heterogeneous metabolic disorder and lack of effective biomarkers for diagnosis. The purpose of this study is to search for reliable metabolite biomarkers of BC as well as triple-negative breast cancer (TNBC) using serum metabolomics approach. METHODS: In this study, an untargeted metabolomics technique based on ultra-high performance liquid chromatography combined with mass spectrometry (UHPLC-MS) was utilized to investigate the differences in serum metabolic profile between the BC group (n = 53) and non-BC group (n = 57), as well as between TNBC patients (n = 23) and non-TNBC subjects (n = 30). The multivariate data analysis, determination of the fold change and the Mann-Whitney U test were used to screen out the differential metabolites. Additionally, machine learning methods including receiver operating curve analysis and logistic regression analysis were conducted to establish diagnostic biomarker panels. RESULTS: There were 36 metabolites found to be significantly different between BC and non-BC groups, and 12 metabolites discovered to be significantly different between TNBC and non-TNBC patients. Results also showed that four metabolites, including N-acetyl-D-tryptophan, 2-arachidonoylglycerol, pipecolic acid and oxoglutaric acid, were considered as vital biomarkers for the diagnosis of BC and non-BC with an area under the curve (AUC) of 0.995. Another two-metabolite panel of N-acetyl-D-tryptophan and 2-arachidonoylglycerol was discovered to discriminate TNBC from non-TNBC and produced an AUC of 0.965. CONCLUSION: This study demonstrated that serum metabolomics can be used to identify BC specifically and identified promising serum metabolic markers for TNBC diagnosis.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/diagnóstico , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem , Detección Precoz del Cáncer , Metabolómica/métodos , Biomarcadores , Biomarcadores de Tumor
8.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189068, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171406

RESUMEN

Cancer vaccines, designed to activate the body's own immune system to fight against tumors, are a current trend in cancer treatment and receiving increasing attention. Cancer vaccines mainly include oncolytic virus vaccine, cell vaccine, peptide vaccine and nucleic acid vaccine. Over the course of decades of research, oncolytic virus vaccine T-VEC, cellular vaccine sipuleucel-T, various peptide vaccines, and DNA vaccine against HPV positive cervical cancer have brought encouraging results for cancer therapy, but are losing momentum in development due to their respective shortcomings. In contrast, the advantages of mRNA vaccines such as high safety, ease of production, and unmatched efficacy are on full display. In addition, advances in technology such as pseudouridine modification have cracked down the bottleneck for developing mRNA vaccines including instability, innate immunogenicity, and low efficiency of in vivo delivery. Several cancer mRNA vaccines have achieved promising results in clinical trials, and their usage in conjunction with other immune checkpoint inhibitors (ICIs) has further boosted the efficiency of anti-tumor immune response. We expect a rapid development of mRNA vaccines for cancer immunotherapy in the near future. This review provides a brief overview of the current status of mRNA vaccines, highlights the action mechanism of cancer mRNA vaccines, their recent advances in clinical trials, and prospects for their clinical applications.


Asunto(s)
Vacunas contra el Cáncer , Virus Oncolíticos , Neoplasias del Cuello Uterino , Femenino , Humanos , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/uso terapéutico , Vacunas de ARNm , Inmunoterapia/métodos
9.
Front Immunol ; 14: 1274547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022518

RESUMEN

The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Macrófagos Asociados a Tumores/patología , Inmunoterapia , Macrófagos , Microambiente Tumoral
10.
Cell Oncol (Dordr) ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962808

RESUMEN

PURPOSE: Nasopharyngeal carcinoma (NPC) is an aggressive head and neck disease with a high incidence of distant metastases. Enlargeosomes are cytoplasmic organelles marked by, desmoyokin/AHNAK. This study aimed to evaluate the expression of AHNAK in NPC and its effect on enlargeosomes and to investigate the correlation between AHNAK expression levels and clinical NPC patient characteristics. METHODS: Primary nasopharyngeal carcinoma (NPC) and NPC specimens were evaluated by analyzing public data, and immunohistochemistry. Systematic in vitro and in vivo experiments were performed using different NPC-derived cell lines and mouse models. RESULTS: In this study, we detected AHNAK and Annexin A2(ANXA2), a protein coating the surface of enlargeosomes, in NPC samples. We found that AHNAK was down-regulated. Down-regulation of AHNAK was associated with poor overall survival in NPC patients. Moreover, transcription factor FOSL1-mediated transcriptional repression was responsible for the low expression of AHNAK by recruiting EZH2. Whereas Annexin A2 was upregulated in human NPC tissues. Upregulation of Annexin A2 was associated with lymph node metastasis and distant metastasis in NPC patients. Functional studies confirmed that silencing of AHNAK enhanced the growth, invasion, and metastatic properties of NPC cells both in vitro and in vivo. In terms of mechanism, loss of AHNAK led to an increase of annexin A2 protein level in NPC cells. Silencing ANXA2 restored NPC cells' migrative and invasive ability upon loss of AHNAK. CONCLUSION: Here, we report AHNAK as a tumor suppressor in NPC, which may act through annexin A2 oncogenic signaling in enlargeosome, with potential implications for novel approaches to NPC treatment.

11.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189006, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37913942

RESUMEN

Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.


Asunto(s)
Gránulos Citoplasmáticos , Estrés Fisiológico , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , Estrés Oxidativo , Carcinogénesis/metabolismo , Microambiente Tumoral
12.
Heliyon ; 9(11): e21289, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37885731

RESUMEN

Background: Occupational exposure is of increasing concern, posing a serious threat to nurses, especially in the event of a public health emergency. Bibliometrics sheds novel light on the current state of research and factors influencing nurses' occupational exposures, illuminating hot topics and trends in the literature. Bibliometrics is essential to analyze the potential harm to nurses in Asia. Methods: Data were extracted from the Web of Science Core Collection on August 6, 2022 with the following search terms: TS= (nurses) AND (TS= (occupational exposure OR occupational health)). CiteSpace and VOSviewer were used to analyze national and institutional collaborations, reference clustering, citations and co-citations of journals and keyword bursts, and HistCite was used to analyze the citation historiography map. To analyze the data and generate statistical charts, Origin and Microsoft Excel were utilized. Results: A total of 1448 studies on nurses' occupational exposure in Asia were identified. China Medical University had the most publications among Asian institutions, and China had the largest share among Asian countries. Most articles on nurses' occupational exposure in Asia were in the Journal of Occupational Health, and the journal with the highest impact factor was the Journal of Nursing Management. The COVID-19 outbreak caused a substantial shift in the direction of studies on nurses' occupational exposure in Asia. Mental health is a current hot topic, while sharps injuries and bodily fluid exposure are long-term priorities for attention. Conclusions: The hotspots of research on nurses' occupational exposure in Asia focus on mental health, burnout, blood exposure, infection, and sharps injury. Due to the COVID-19 pandemic, recent research has concentrated on personalized mental health care and the development of protective equipment, and cross-disciplinary collaboration may be a new trend in the future.

13.
Front Cell Dev Biol ; 11: 1267661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601114

RESUMEN

[This corrects the article DOI: 10.3389/fcell.2021.762796.].

14.
Theranostics ; 13(10): 3480-3496, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351173

RESUMEN

Purpose: Chondrocytes (CHs) in cartilage undergo several detrimental events during the development of osteoarthritis (OA). However, the mechanism underlying CHs regeneration involved in pathogenesis is largely unknown. The aim of this study was to explore the underlying mechanism of regeneration of CHs involved in the pathological condition and the potential therapeutic strategies of cartilage repair. Methods and Materials: CHs were isolated from human cartilage in different OA stages and the high-resolution cellular architecture of human osteoarthritis was examined by applying single-cell RNA sequencing. The analysis of gene differential expression and gene set enrichment was utilized to reveal the relationship of cartilage regeneration and microtubule stabilization. Microtubule destabilizer (nocodazole) and microtubule stabilizer (docetaxel) treated-human primary CHs and rats cartilage defect model were used to investing the effects and downstream signaling pathway of microtubule stabilization on cartilage regeneration. Results: CHs subpopulations were identified on the basis of their gene markers and the data indicated an imbalance caused by an increase in the degeneration and disruption of CHs regeneration in OA samples. Interestingly, the CHs subpopulation namely CHI3L1+ CHs, was characterized by the cell regenerative capacity, stem cell potency and the activated microtubule (MT) process. Furthermore, the data indicated that MT stabilization was effective in promoting cartilage regeneration in rats with cartilage injury model by inhibiting YAP activity. Conclusion: These findings lead to a new understanding of CHs regeneration in the OA pathophysiology context and suggest that MT stabilization is a promising therapeutic target for OA and cartilage injury.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratas , Animales , Condrocitos/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Células Madre/metabolismo , Microtúbulos/metabolismo
15.
Cell Death Differ ; 30(7): 1679-1694, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37173390

RESUMEN

Circular RNAs (circRNAs) play an important regulatory role in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), which have not been thoroughly elucidated. In this study, we revealed for the first time that circRILPL1 was upregulated in NPC, weakened adhesion and decreased stiffness of NPC cells, and promoted NPC proliferation and metastasis in vitro and in vivo. Mechanistically, circRILPL1 inhibited the LATS1-YAP kinase cascade by binding to and activating ROCK1, resulting in decrease of YAP phosphorylation. Binding and cooperating with transport receptor IPO7, circRILPL1 promoted the translocation of YAP from the cytoplasm to the nucleus, where YAP enhanced the transcription of cytoskeleton remodeling genes CAPN2 and PXN. By which, circRILPL1 contributed to the pathogenesis of NPC. Our results demonstrated that circRILPL1 promoted the proliferation and metastasis of NPC through activating the Hippo-YAP signaling pathway by binding to both ROCK1 and IPO7. Highly expressed circRILPL1 in NPC may serve as an important biomarker for tumor diagnosis and may also be a potential therapeutic target.


Asunto(s)
Neoplasias Nasofaríngeas , ARN Circular , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , ARN Circular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proliferación Celular , Línea Celular Tumoral , Vía de Señalización Hippo , Neoplasias Nasofaríngeas/metabolismo , Regulación Neoplásica de la Expresión Génica , Quinasas Asociadas a rho/genética
16.
Sci China Life Sci ; 66(11): 2515-2526, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37071289

RESUMEN

Cancer is one of the leading causes of human death worldwide. Treatment of cancer exhausts significant medical resources, and the morbidity and mortality caused by cancer is a huge social burden. Cancer has therefore become a serious economic and social problem shared globally. As an increasingly prevalent disease in China, cancer is a huge challenge for the country's healthcare system. Based on recent data published in the Journal of the National Cancer Center on cancer incidence and mortality in China in 2016, we analyzed the current trends in cancer incidence and changes in cancer mortality and survival rate in China. And also, we examined several key risk factors for cancer pathogenesis and discussed potential countermeasures for cancer prevention and treatment in China.


Asunto(s)
Neoplasias , Humanos , Neoplasias/epidemiología , Neoplasias/prevención & control , Incidencia , Factores de Riesgo , Tasa de Supervivencia , China/epidemiología
18.
Br J Cancer ; 129(2): 204-221, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37095185

RESUMEN

Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.


Asunto(s)
Neoplasias , Procesamiento Postranscripcional del ARN , Humanos , ARN Mensajero/metabolismo , ARN/genética , ARN/metabolismo , Neoplasias/genética , Metilación
19.
Front Immunol ; 14: 1105973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875102

RESUMEN

Balancing microglia M1/M2 polarization is an effective therapeutic strategy for neuroinflammation after subarachnoid hemorrhage (SAH). Pleckstrin homology-like domain family A member 1 (PHLDA1) has been demonstrated to play a crucial role in immune response. However, the function roles of PHLDA1 in neuroinflammation and microglial polarization after SAH remain unclear. In this study, SAH mouse models were assigned to treat with scramble or PHLDA1 small interfering RNAs (siRNAs). We observed that PHLDA1 was significantly increased and mainly distributed in microglia after SAH. Concomitant with PHLDA1 activation, nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome expression in microglia was also evidently enhanced after SAH. In addition, PHLDA1 siRNA treatment significantly reduced microglia-mediated neuroinflammation by inhibiting M1 microglia and promoting M2 microglia polarization. Meanwhile, PHLDA1 deficiency reduced neuronal apoptosis and improved neurological outcomes after SAH. Further investigation revealed that PHLDA1 blockade suppressed the NLRP3 inflammasome signaling after SAH. In contrast, NLRP3 inflammasome activator nigericin abated the beneficial effects of PHLDA1 deficiency against SAH by promoting microglial polarization to M1 phenotype. In all, we proposed that PHLDA1 blockade might ameliorate SAH-induced brain injury by balancing microglia M1/M2 polarization via suppression of NLRP3 inflammasome signaling. Targeting PHLDA1 might be a feasible strategy for treating SAH.


Asunto(s)
Inflamasomas , Hemorragia Subaracnoidea , Animales , Ratones , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , ARN Interferente Pequeño
20.
J Med Internet Res ; 25: e45721, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961495

RESUMEN

BACKGROUND: COVID-19 has been reported to affect the sleep quality of Chinese residents; however, the epidemic's effects on the sleep quality of college students during closed-loop management remain unclear, and a screening tool is lacking. OBJECTIVE: This study aimed to understand the sleep quality of college students in Fujian Province during the epidemic and determine sensitive variables, in order to develop an efficient prediction model for the early screening of sleep problems in college students. METHODS: From April 5 to 16, 2022, a cross-sectional internet-based survey was conducted. The Pittsburgh Sleep Quality Index (PSQI) scale, a self-designed general data questionnaire, and the sleep quality influencing factor questionnaire were used to understand the sleep quality of respondents in the previous month. A chi-square test and a multivariate unconditioned logistic regression analysis were performed, and influencing factors obtained were applied to develop prediction models. The data were divided into a training-testing set (n=14,451, 70%) and an independent validation set (n=6194, 30%) by stratified sampling. Four models using logistic regression, an artificial neural network, random forest, and naïve Bayes were developed and validated. RESULTS: In total, 20,645 subjects were included in this survey, with a mean global PSQI score of 6.02 (SD 3.112). The sleep disturbance rate was 28.9% (n=5972, defined as a global PSQI score >7 points). A total of 11 variables related to sleep quality were taken as parameters of the prediction models, including age, gender, residence, specialty, respiratory history, coffee consumption, stay up, long hours on the internet, sudden changes, fears of infection, and impatient closed-loop management. Among the generated models, the artificial neural network model proved to be the best, with an area under curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 0.713, 73.52%, 25.51%, 92.58%, 57.71%, and 75.79%, respectively. It is noteworthy that the logistic regression, random forest, and naive Bayes models achieved high specificities of 94.41%, 94.77%, and 86.40%, respectively. CONCLUSIONS: The COVID-19 containment measures affected the sleep quality of college students on multiple levels, indicating that it is desiderate to provide targeted university management and social support. The artificial neural network model has presented excellent predictive efficiency and is favorable for implementing measures earlier in order to improve present conditions.


Asunto(s)
COVID-19 , Calidad del Sueño , Humanos , Estudios Transversales , COVID-19/epidemiología , Teorema de Bayes , Estudiantes , Brotes de Enfermedades , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA