Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 13(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36014168

RESUMEN

Lead-free environmentally friendly piezoelectrical materials with enhanced piezoelectric properties are of great significance for high-resolution ultrasound imaging applications. In this paper, Na0.5Bi4.5Ti3.86Mn0.06Nb0.08O15+y (NBT-Nb-Mn) bismuth-layer-structured ceramics were prepared by solid-phase synthesis. The crystallographic structure, micromorphology, and piezoelectrical and electromechanical properties of NBT-Nb-Mn ceramics were examined, showing their enhanced piezoelectricity (d33 = 33 pC/N) and relatively high electromechanical coupling coefficient (kt = 0.4). The purpose of this article is to describe the development of single element ultrasonic transducers based on these piezoelectric ceramics. The as-prepared high-frequency tightly focused transducer (ƒ-number = 1.13) had an electromechanical coupling coefficient of 0.48. The center frequency was determined to be 37.4 MHz and the -6 dB bandwidth to be 47.2%. According to the B-mode imaging experiment of 25 µm tungsten wires, lateral resolution of the transducer was calculated as 56 µm. Additionally, the experimental results were highly correlated to the results simulated by COMSOL software. By scanning a coin, the imaging effect of the transducer was further evaluated, demonstrating the application advantages of the prepared transducer in the field of high-sensitivity ultrasound imaging.

2.
Sci Total Environ ; 825: 154007, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35192825

RESUMEN

Soil moisture (SM) and groundwater (GW) depletion triggered by anthropogenic and natural climate change are influencing food security via crop production per capita decrease in the Nile River Basin (NRB). However, to the best of our understanding, the causes and impact of SM and GW depletion have not been studied yet comprehensively in the NRB. In this study, GW is derived from the Gravity Recovery and Climate Experiment (GRACE) mission, and SM was estimated using the Triple Collocation Analysis (TCA). SM/GW depletion causes were evaluated via the Land Use Land Cover (LULC) and rainfall/temperature change analysis, whereas impact analysis focused on crop production per capita reduction (food insecurity) during SM depletion. The major findings of this study are 1) TCA analyzed SM show a decreasing trend (-0.06 mm/yr) in agricultural land while increasing (+0.21 mm/yr) in forest land, 2) LULC analysis indicated a vast increment of agricultural land (+9%) and bareland (+9%) although the decreasing pattern of forest (-1.5%) and shrubland (-6.9%) during 1990-2019; 3) the impact of SM depletion on crop production per capita caused food insecurity during a drought year, 4) agriculture drought indices and crop production per capita show high correlations (R2 = 0.86 to 0.60) demonstrated that Vegetation Supply Water Index (VSWI) could provide strategic warning of drought impacts on rainfed agricultural regions. In conclusion, SM and GW depletions are mainly caused by human-induced and climate change factors imposing food insecurity challenges in the NRB coupled with increasing temperature and excessive water extraction for irrigation. Therefore, it is highly recommended to rethink and reverse SM/GW depletion causing factors to sustain food security in NRB and similar basins.


Asunto(s)
Agua Subterránea , Suelo , Agricultura , Producción de Cultivos , Humanos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...