Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 1965, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438382

RESUMEN

The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generate diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that conditional male mice with genetic overexpression of Ndufs4 exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping protein STOML2 in linking NDUFS4 with improved cristae morphology. Together, we provide the evidence on the central role of NDUFS4 as a regulator of cristae remodeling and mitochondrial function in kidney podocytes. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Masculino , Animales , Ratones , Nefropatías Diabéticas/genética , Diabetes Mellitus Experimental/genética , Membranas Mitocondriales , Riñón , Mitocondrias , Complejo I de Transporte de Electrón/genética
3.
Res Sq ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37461606

RESUMEN

The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generated diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model to investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that these conditional mice exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping proteins in linking NDUFS4 with improved cristae morphology. Taken together, we discover the central role of NDUFS4 as a powerful regulator of cristae remodeling, respiratory supercomplexes assembly, and mitochondrial ultrastructure in vitro and in vivo. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.

4.
Cell Calcium ; 114: 102770, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37393815

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed large-conductance Ca2+-permeable channels predominantly localized to the endoplasmic reticulum (ER) membranes of virtually all eukaryotic cell types. IP3Rs work as Ca2+ signaling hubs through which diverse extracellular stimuli and intracellular inputs are processed and then integrated to result in delivery of Ca2+ from the ER lumen to generate cytosolic Ca2+ signals with precise temporal and spatial properties. IP3R-mediated Ca2+ signals control a vast repertoire of cellular functions ranging from gene transcription and secretion to the more enigmatic brain activities such as learning and memory. IP3Rs open and release Ca2+ when they bind both IP3 and Ca2+, the primary channel agonists. Despite overwhelming evidence supporting functional interplay between IP3 and Ca2+ in activation and inhibition of IP3Rs, the mechanistic understanding of how IP3R channels convey their gating through the interplay of two primary agonists remains one of the major puzzles in the field. The last decade has seen much progress in the use of cryogenic electron microscopy to elucidate the molecular mechanisms of ligand binding, ion permeation, ion selectivity and gating of the IP3R channels. The results of these studies, summarized in this review, provide a prospective view of what the future holds in structural and functional research of IP3Rs.


Asunto(s)
Calcio , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ligandos , Estudios Prospectivos , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Señalización del Calcio/fisiología
5.
Nat Commun ; 14(1): 2783, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188665

RESUMEN

Cardiolipin is a hallmark phospholipid of mitochondrial membranes. Despite established significance of cardiolipin in supporting respiratory supercomplex organization, a mechanistic understanding of this lipid-protein interaction is still lacking. To address the essential role of cardiolipin in supercomplex organization, we report cryo-EM structures of a wild type supercomplex (IV1III2IV1) and a supercomplex (III2IV1) isolated from a cardiolipin-lacking Saccharomyces cerevisiae mutant at 3.2-Å and 3.3-Å resolution, respectively, and demonstrate that phosphatidylglycerol in III2IV1 occupies similar positions as cardiolipin in IV1III2IV1. Lipid-protein interactions within these complexes differ, which conceivably underlies the reduced level of IV1III2IV1 and high levels of III2IV1 and free III2 and IV in mutant mitochondria. Here we show that anionic phospholipids interact with positive amino acids and appear to nucleate a phospholipid domain at the interface between the individual complexes, which dampen charge repulsion and further stabilize interaction, respectively, between individual complexes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Commun ; 13(1): 6942, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376291

RESUMEN

Inositol-1,4,5-trisphosphate receptors (IP3Rs) are activated by IP3 and Ca2+ and their gating is regulated by various intracellular messengers that finely tune the channel activity. Here, using single particle cryo-EM analysis we determined 3D structures of the nanodisc-reconstituted IP3R1 channel in two ligand-bound states. These structures provide unprecedented details governing binding of IP3, Ca2+ and ATP, revealing conformational changes that couple ligand-binding to channel opening. Using a deep-learning approach and 3D variability analysis we extracted molecular motions of the key protein domains from cryo-EM density data. We find that IP3 binding relies upon intrinsic flexibility of the ARM2 domain in the tetrameric channel. Our results highlight a key role of dynamic side chains in regulating gating behavior of IP3R channels. This work represents a stepping-stone to developing mechanistic understanding of conformational pathways underlying ligand-binding, activation and regulation of the channel.


Asunto(s)
Calcio , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Calcio/metabolismo , Ligandos , Dominios Proteicos , Inositol 1,4,5-Trifosfato/metabolismo , Señalización del Calcio
7.
Proc Natl Acad Sci U S A ; 119(39): e2209267119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122240

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.


Asunto(s)
Calcio , Receptores de Inositol 1,4,5-Trifosfato , Canal Liberador de Calcio Receptor de Rianodina , Adenosina Trifosfato , Aminoácidos Básicos , Sitios de Unión , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
8.
Structure ; 30(1): 107-113.e3, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34506732

RESUMEN

The tripartite AcrAB-TolC assembly, which spans both the inner and outer membranes in Gram-negative bacteria, is an efflux pump that contributes to multidrug resistance. Here, we present the in situ structure of full-length Escherichia coli AcrAB-TolC determined at 7 Å resolution by electron cryo-tomography. The TolC channel penetrates the outer membrane bilayer through to the outer leaflet and exhibits two different configurations that differ by a 60° rotation relative to the AcrB position in the pump assembly. AcrA protomers interact directly with the inner membrane and with AcrB via an interface located in proximity to the AcrB ligand-binding pocket. Our structural analysis suggests that these AcrA-bridged interactions underlie an allosteric mechanism for transmitting drug-evoked signals from AcrB to the TolC channel within the pump. Our study demonstrates the power of in situ electron cryo-tomography, which permits critical insights into the function of bacterial efflux pumps.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Lipoproteínas/química , Proteínas de Transporte de Membrana/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Regulación Alostérica , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/química , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligandos , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Conformación Proteica
9.
Commun Biol ; 4(1): 625, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035440

RESUMEN

Type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is the predominant Ca2+-release channel in neurons. IP3R1 mediates Ca2+ release from the endoplasmic reticulum into the cytosol and thereby is involved in many physiological processes. Here, we present the cryo-EM structures of full-length rat IP3R1 reconstituted in lipid nanodisc and detergent solubilized in the presence of phosphatidylcholine determined in ligand-free, closed states by single-particle electron cryo-microscopy. Notably, both structures exhibit the well-established IP3R1 protein fold and reveal a nearly complete representation of lipids with similar locations of ordered lipids bound to the transmembrane domains. The lipid-bound structures show improved features that enabled us to unambiguously build atomic models of IP3R1 including two membrane associated helices that were not previously resolved in the TM region. Our findings suggest conserved locations of protein-bound lipids among homotetrameric ion channels that are critical for their structural and functional integrity despite the diversity of structural mechanisms for their gating.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/ultraestructura , Membrana Dobles de Lípidos/química , Animales , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón/métodos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fosfatidilcolinas/química , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Ratas
10.
Nat Struct Mol Biol ; 26(1): 40-49, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598551

RESUMEN

Cation channels of the transient receptor potential (TRP) family serve important physiological roles by opening in response to diverse intra- and extracellular stimuli that regulate their lower or upper gates. Despite extensive studies, the mechanism coupling these gates has remained obscure. Previous structures have failed to resolve extracellular loops, known in the TRPV subfamily as 'pore turrets', which are proximal to the upper gates. We established the importance of the pore turret through activity assays and by solving structures of rat TRPV2, both with and without an intact turret at resolutions of 4.0 Å and 3.6 Å, respectively. These structures resolve the full-length pore turret and reveal fully open and partially open states of TRPV2, both with unoccupied vanilloid pockets. Our results suggest a mechanism by which physiological signals, such as lipid binding, can regulate the lower gate and couple to the upper gate through a pore-turret-facilitated mechanism.


Asunto(s)
Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Animales , Humanos , Estructura Secundaria de Proteína , Ratas , Transducción de Señal/genética , Transducción de Señal/fisiología , Canales Catiónicos TRPV/genética , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
11.
Cell Res ; 28(12): 1158-1170, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30470765

RESUMEN

Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are cation channels that mobilize Ca2+ from intracellular stores in response to a wide range of cellular stimuli. The paradigm of InsP3R activation is the coupled interplay between binding of InsP3 and Ca2+ that switches the ion conduction pathway between closed and open states to enable the passage of Ca2+ through the channel. However, the molecular mechanism of how the receptor senses and decodes ligand-binding signals into gating motion remains unknown. Here, we present the electron cryo-microscopy structure of InsP3R1 from rat cerebellum determined to 4.1 Å resolution in the presence of activating concentrations of Ca2+ and adenophostin A (AdA), a structural mimetic of InsP3 and the most potent known agonist of the channel. Comparison with the 3.9 Å-resolution structure of InsP3R1 in the Apo-state, also reported herein, reveals the binding arrangement of AdA in the tetrameric channel assembly and striking ligand-induced conformational rearrangements within cytoplasmic domains coupled to the dilation of a hydrophobic constriction at the gate. Together, our results provide critical insights into the mechanistic principles by which ligand-binding allosterically gates InsP3R channel.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cerebelo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Activación del Canal Iónico , Conformación Proteica , Adenosina/análogos & derivados , Adenosina/química , Regulación Alostérica , Animales , Microscopía por Crioelectrón/métodos , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Ligandos , Modelos Moleculares , Ratas
12.
Protein Expr Purif ; 150: 44-52, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29729886

RESUMEN

Plants possess very large numbers of biosynthetic cytochrome P450 enzymes. In spite of the importance of these enzymes for the synthesis of bioactive plant secondary metabolites, only two plant P450 structures has been obtained to date. Isoflavone synthase (IFS) is a membrane-associated cytochrome P450 enzyme catalyzing the entry-point reaction into isoflavonoid biosynthesis. IFS from the model legume Medicago truncatula (CYP93C20) was engineered by deleting the membrane-spanning domain and inserting a hydrophilic polypeptide in the N-terminus and a four histidine tag at the C-terminus. The truncated form exhibited dramatically enhanced expression and solubility. The engineered enzyme was expressed in Escherichia coli XL1-blue cells and was purified by Ni2+-NTA affinity chromatograph and size-exclusion chromatograph. The purified enzyme was characterized by enzyme assay, reduced carbon monoxide difference spectroscopy and peptide mass fingerprinting. The engineered soluble enzyme exhibited the same activity as the full length membrane-associated enzyme expressed in yeast. These studies suggest an approach for engineering plant membrane-associated P450s with enhanced expression and solubility for mechanistic and structural studies.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Expresión Génica , Medicago truncatula/enzimología , Oxigenasas , Proteínas de Plantas , Sistema Enzimático del Citocromo P-450/sangre , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Medicago truncatula/genética , Oxigenasas/biosíntesis , Oxigenasas/química , Oxigenasas/genética , Oxigenasas/aislamiento & purificación , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
13.
Mol Cell ; 67(5): 733-743.e4, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28844863

RESUMEN

Nuclear receptors recruit multiple coactivators sequentially to activate transcription. This "ordered" recruitment allows different coactivator activities to engage the nuclear receptor complex at different steps of transcription. Estrogen receptor (ER) recruits steroid receptor coactivator-3 (SRC-3) primary coactivator and secondary coactivators, p300/CBP and CARM1. CARM1 recruitment lags behind the binding of SRC-3 and p300 to ER. Combining cryo-electron microscopy (cryo-EM) structure analysis and biochemical approaches, we demonstrate that there is a close crosstalk between early- and late-recruited coactivators. The sequential recruitment of CARM1 not only adds a protein arginine methyltransferase activity to the ER-coactivator complex, it also alters the structural organization of the pre-existing ERE/ERα/SRC-3/p300 complex. It induces a p300 conformational change and significantly increases p300 HAT activity on histone H3K18 residues, which, in turn, promotes CARM1 methylation activity on H3R17 residues to enhance transcriptional activity. This study reveals a structural role for a coactivator sequential recruitment and biochemical process in ER-mediated transcription.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Receptor alfa de Estrógeno/metabolismo , Guanilato Ciclasa/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Transcripción Genética , Acetilación , Sitios de Unión , Proteínas Adaptadoras de Señalización CARD/química , Proteínas Adaptadoras de Señalización CARD/genética , Microscopía por Crioelectrón , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína p300 Asociada a E1A/química , Proteína p300 Asociada a E1A/genética , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/genética , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Células HEK293 , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Células MCF-7 , Metilación , Modelos Moleculares , Complejos Multiproteicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Coactivador 3 de Receptor Nuclear/química , Coactivador 3 de Receptor Nuclear/genética , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Factores de Tiempo , Factores de Transcripción , Activación Transcripcional , Transfección
14.
Curr Opin Struct Biol ; 46: 38-47, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28618351

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed intracellular Ca2+ channels and the major mediators of cellular Ca2+ signals generated by the release of Ca2+ ions from intracellular stores in response to a variety of extracellular stimuli. Despite established physiological significance and proven involvements of IP3R channels in many human diseases, detailed structural basis for signal detection by these ion channels and their gating remain obscure. Recently, single particle electron cryomicroscopy (cryo-EM) has yielded a long-awaited near-atomic resolution structure of the entire full-length type 1 IP3R. This structure provided exciting mechanistic insights into the molecular assembly of IP3R, revealing the pronounced structural conservation of Ca2+ release channels and raising many fundamental and controversial questions on their activation and gating. Here we summarize the major technological advances that propelled our cryo-EM analysis of IP3R to near-atomic resolution and discuss what the future holds for structural biology of Ca2+ release channels.


Asunto(s)
Microscopía por Crioelectrón/métodos , Receptores de Inositol 1,4,5-Trifosfato/química , Secuencia de Aminoácidos , Animales , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Dominios Proteicos , Relación Señal-Ruido
15.
Sci Rep ; 7(1): 1404, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28469174

RESUMEN

Hepatitis B Virus core protein (HBc) has multiple roles in the viral lifecycle: viral assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions. HBc displays assembly polymorphism - it can assemble into icosahedral capsid and aberrant non-capsid structures. It has been hypothesized that the assembly polymorphism is due to allosteric conformational changes of HBc dimer, the smallest assembly unit, however, the mechanism governing the polymorphic assembly of the HBc dimer is still elusive. By using the experimental antiviral drug BAY 41-4109, we successfully transformed the HBc assembly from icosahedral capsid to helical tube. Structural analyses of HBc dimers from helical tubes, T = 4 icosahedral capsid, and sheet-like HBc ensemble revealed differences within the inter-dimer interface. Disruption of the HBc inter-dimer interface may likely promote the various assembly forms of HBc. Our work provides new structural insights into the HBV assembly mechanism and strategic guide for anti-HBV drug design.


Asunto(s)
Virus de la Hepatitis B/química , Virus de la Hepatitis B/fisiología , Proteínas del Núcleo Viral/química , Ensamble de Virus , Escherichia coli , Humanos , Modelos Moleculares , Multimerización de Proteína , Estructura Terciaria de Proteína , Piridinas/farmacología , Pirimidinas/farmacología , Proteínas del Núcleo Viral/ultraestructura
16.
Elife ; 62017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28355133

RESUMEN

Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope. Here, we report the near-atomic resolution cryoEM structures of the Escherichia coli AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a quaternary structural switch that allosterically couples and synchronizes initial ligand binding with channel opening. Within the transport-activated state, the channel remains open even though the pump cycles through three distinct conformations. Collectively, our data provide a dynamic mechanism for the assembly and operation of the AcrAB-TolC pump.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Regulación Alostérica , Microscopía por Crioelectrón , Escherichia coli/química , Conformación Proteica
17.
Adv Exp Med Biol ; 981: 121-147, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29594860

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed intracellular ligand-gated Ca2+ channels present on the endoplasmic reticulum of virtually all eukaryotic cells. These channels mediate the Ca2+ release from intracellular stores in response to activation by the signaling molecule IP3, which functions to transmit diverse signals received by the cell, e.g. from hormones, neurotransmitters, growth factors and hypertrophic stimuli, to various signaling pathways within the cell. Thus, IP3R channels can be conceptualized as highly dynamic scaffold membrane protein complexes, where binding of ligands can change the scaffold structure leading to cellular Ca2+ signals that direct markedly different cellular actions. Although extensively characterized in physiological and biochemical studies, the detailed mechanisms of how IP3Rs produce highly controlled Ca2+ signals in response to diversified extra- and intracellular stimuli remains unknown and requires high-resolution knowledge of channel molecular architecture. Recently, single-particle electron cryomicroscopy (cryo-EM) has yielded a long-awaited near-atomic resolution structure of the entire full-length type 1 IP3R. This structure provides important insights into the molecular underpinnings of ligand-mediated activation and regulation of IP3R. In this chapter, we evaluate available information and research progress on the structure of IP3R channel in an attempt to shed light on its function.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/química , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animales , Microscopía por Crioelectrón , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
18.
Nature ; 527(7578): 336-41, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26458101

RESUMEN

Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 Å) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously ∼85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed α-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.


Asunto(s)
Microscopía por Crioelectrón , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/ultraestructura , Regulación Alostérica , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Calcio/metabolismo , Señalización del Calcio , Citosol/química , Citosol/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Activación del Canal Iónico , Modelos Moleculares , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
19.
Cell Microbiol ; 17(11): 1583-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25939747

RESUMEN

The matrix protein 1 (M1) is the most abundant structural protein in influenza A virus particles. It oligomerizes to form the matrix layer under the lipid membrane, sustaining stabilization of the morphology of the virion. The present study indicates that M1 forms oligomers based on a fourfold symmetrical oligomerization pattern. Further analysis revealed that the oligomerization pattern of M1 was controlled by a highly conserved region within the C-terminal domain. Two polar residues of this region, serine-183 (S183) and threonine-185 (T185), were identified to be critical for the oligomerization pattern of M1. M1 point mutants suggest that single S183A or T185A substitution could result in the production of morphologically filamentous particles, while double substitutions, M1-S183A/T185A, totally disrupted the fourfold symmetry and resulted in the failure of virus production. These data indicate that the polar groups in these residues are essential to control the oligomerization pattern of M1. Thus, the present study will aid in determining the mechanisms of influenza A virus matrix layer formation during virus morphogenesis.


Asunto(s)
Virus de la Influenza A/fisiología , Proteínas de la Matriz Viral/metabolismo , Virión/metabolismo , Ensamble de Virus , Aminoácidos/genética , Animales , Línea Celular , Análisis Mutacional de ADN , Perros , Humanos , Virus de la Influenza A/genética , Mutación Puntual , Multimerización de Proteína , Proteínas de la Matriz Viral/genética
20.
Eur J Transl Myol ; 25(1): 35-48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25844145

RESUMEN

Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA