Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(19): e202402053, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38494439

RESUMEN

Direct synthesis of dimethyl carbonate (DMC) from CO2 plays an important role in carbon neutrality, but its efficiency is still far from the practical application, due to the limited understanding of the reaction mechanism and rational design of efficient catalyst. Herein, abundant electron-enriched lattice oxygen species were introduced into CeO2 catalyst by constructing the point defects and crystal-terminated phases in the crystal reconstruction process. Benefitting from the acid-base properties modulated by the electron-enriched lattice oxygen, the optimized CeO2 catalyst exhibited a much higher DMC yield of 22.2 mmol g-1 than the reported metal-oxide-based catalysts at the similar conditions. Mechanistic investigations illustrated that the electron-enriched lattice oxygen can provide abundant sites for CO2 adsorption and activation, and was advantageous of the formation of the weakly adsorbed active methoxy species. These were facilitating to the coupling of methoxy and CO2 for the key *CH3OCOO intermediate formation. More importantly, the weakened adsorption of *CH3OCOO on the electron-enriched lattice oxygen can switch the rate-determining-step (RDS) of DMC synthesis from *CH3OCOO formation to *CH3OCOO dissociation, and lower the corresponding activation barriers, thus giving rise to a high performance. This work provides insights into the underlying reaction mechanism for DMC synthesis from CO2 and methanol and the design of highly efficient catalysts.

2.
Angew Chem Int Ed Engl ; 62(37): e202306786, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37470313

RESUMEN

Although considerable efforts towards directly converting syngas to liquid fuels through Fischer-Tropsch synthesis have been made, developing catalysts with low CO2 selectivity for the synthesis of high-quality gasoline remains a big challenge. Herein, we designed a bifunctional catalyst composed of hydrophobic FeNa@Si-c and HZSM-5 zeolite, which exhibited a low CO2 selectivity of 14.3 % at 49.8 % CO conversion, with a high selectivity of 62.5 % for gasoline in total products. Molecular dynamic simulations and model experiments revealed that the diffusion of water molecules through hydrophilic catalyst was bidirectional, while the diffusion through hydrophobic catalyst was unidirectional, which were crucial to tune the water-gas shift reaction and control CO2 formation. This work provides a new fundamental understanding about the function of hydrophobic modification of catalysts in syngas conversion.

3.
Materials (Basel) ; 15(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36079533

RESUMEN

To promote the in-situ and structural application of waste concrete in cold regions, the sustainable application potential of waste concrete in a freeze-thaw (F-T) environment was comprehensively evaluated from three aspects of performance, environmental load, and economic benefit. The recycled aggregate concrete (RAC) was produced by recycled coarse aggregate (RCA), which was obtained from the crushing of natural aggregate concrete (NAC) after every F-T 150 cycles until F-T failure. The effects of F-T damage of parent concrete on the physical properties of RCA and mechanical and frost resistance of RAC under 35% flexural stress were studied. Besides, the sustainability of NAC and RAC was compared and analyzed by emergy theory. The results suggested that the physical properties of RCA deteriorated gradually with the accumulation of F-T damage to parent concrete. The RCA obtained from parent concrete that suffered F-T damage could be used as coarse aggregate for structural concrete when F-T damage is smaller than 0.367. The F-T damage of parent concrete had an adverse effect on the mechanical properties and frost resistance of RAC. The frost resistance of RAC obtained from parent concrete with larger F-T damage was worse. The RAC prepared from parent concrete without F-T failure can serve 50 years in cold regions, while that with F-T failure can only serve 30 years. The F-T damage microelements were dispersed in the adhesive mortar of RCA and transferred to RAC, resulting in the reduction of the mechanical properties and frost resistance of RAC. Emergy analysis showed that the reuse of waste concrete after F-T failure required higher economic input, higher environment load, lower output efficiency, and sustainability. The performance, environmental load and economic benefit of RAC prepared by using waste concrete after F-T failure were inferior to that of waste concrete without F-T failure. Waste concrete after F-T failure is not recommended to be used as coarse aggregate for structural concrete.

4.
J Colloid Interface Sci ; 591: 418-428, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33631529

RESUMEN

Inspired by Nepenthes pitcher plants, slippery liquid-infused porous surfaces (SLIPSs) have attracted wide attention and exhibited remarkable liquid repellency, droplet motion control and antifouling properties. However, lubricant-impregnated surfaces have poor durability, leading to loss of control of the movements of droplets during applications. Herein, WO3-based slippery coatings with high stability were prepared by the spray method and photocatalytic reaction. Notably, on the basis of the hierarchical structures, the strong intermolecular forces between the polydimethylsiloxane brush and silicone oil led to the formation of a stable lubricant layer on the WO3-based slippery coating, which can suppress lubricant loss during water collection. After a series of stability tests, such as high-speed centrifugation, long-term storage, acidic solution and multiple heating/cooling cycles, the biomimetic slippery surface still displays excellent surface-slippery stability. Furthermore, the slippery surface exhibits superior water mist capture, water droplet expansion and harvested water removal abilities, leading to good water collection performance. The silicone oil content in the collected water was 28 mg/L, demonstrating that the loss of oil was lower during the water collection process. Even under harsh environments, including multiple heating/cooling cycles, long-term storage and high shear force, lubricant-impregnated coatings can also maintain good water collection efficiency. Therefore, these slippery coatings are promising for widespread application.

5.
mSphere ; 5(5)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115838

RESUMEN

The nematophagous fungus Purpureocillium lavendulum is a natural enemy of plant-parasitic nematodes, which cause severe economic losses in agriculture worldwide. The production of asexual spores (conidia) in P. lavendulum is crucial for its biocontrol activity against nematodes. In this study, we characterized the core regulatory genes involved in conidiation of P. lavendulum at the molecular level. The central regulatory pathway is composed of three genes, P. lavendulumbrlA (PlbrlA), PlabaA, and PlwetA, which regulate the early, middle, and late stages of asexual development, respectively. The deletion of PlbrlA completely inhibited conidiation, with only conidiophore stalks produced. PlAbaA determines the differentiation of conidia from phialides. The deletion of PlwetA affected many phenotypes related to conidial maturation, including abscission of conidia from conidium strings, thickening of the cell wall layers, vacuole generation inside the cytoplasm, production of trehalose, tolerance to heat shock, etc. Comparative analyses showed that the upstream regulators of the core regulatory pathway of conidiation, especially the "fluffy" genes, were different from those in Aspergillus Besides their roles in conidiation, the central regulators also influence the production of secondary metabolites, such as the leucinostatins, in P. lavendulum Our study revealed a set of essential genes controlling conidiation in P. lavendulum and provided a framework for further molecular genetic studies on fungus-nematode interactions and for the biocontrol of plant-parasitic nematodes.IMPORTANCE Plant-parasitic nematodes cause serious damage to crops throughout the world. Purpureocillium lavendulum is a nematophagous fungus which is a natural enemy of nematodes and a potential biocontrol agent against plant-parasitic nematodes. The conidia play an important role during infection of nematodes. In this study, we identified and characterized genes involved in regulating asexual development of P. lavendulum We found that these genes not only regulate conidiation but also influence secondary-metabolite production. This work provides a basis for future studies of fungus-nematode interactions and nematode biocontrol.


Asunto(s)
Proteínas Fúngicas/genética , Genes Reguladores , Hypocreales/crecimiento & desarrollo , Hypocreales/genética , Regulación Fúngica de la Expresión Génica , Reproducción Asexuada , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
6.
Anal Methods ; 12(32): 4089-4096, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32756702

RESUMEN

Measuring 87Sr/86Sr ratios with MC-ICP-MS is a straightforward technique due to its fast sample introduction. However, excellent accuracy and precision cannot be easily achieved unless careful optimization of plasma running conditions and evaluation of instrumental mass bias are conducted. Here, we developed an optimized protocol for measuring 87Sr/86Sr ratios using a modified cone arrangement (H skimmer cone + Jet sample cone) by carefully examining the effects of plasma working conditions on the performance of Sr isotope analysis with a Neptune Plus™ MC-ICP-MS. The modified cone arrangement significantly enhanced the Sr signal sensitivities by a factor of 2, compared to the standard cone arrangement (H skimmer cone + standard sample cone). For both cone arrangements, the mass bias of Sr isotopes fits the standard exponential law under optimal conditions. However, at non-optimum sample gas flow rates, the corrected 87Sr/86Sr ratios deviated from the reference value, and thus non-linear mass bias was observed. Such mass bias could not be corrected using the standard exponential law. This observation cautioned researchers analyzing Sr ratios at optimized sample gas flow rates when using MC-ICP-MS. With further evaluation of the sample concentration, integration time and interference element correction, 87Sr/86Sr ratio analysis with high accuracy and precision was achieved. Excellent results of the reference materials were obtained using the optimized protocol. Compared to the classical TIMS technique, our method is comparable in precision (∼8 × 10-6, 2SE) but much faster in operation (14 minutes per analysis), and therefore is a technical advance in Sr isotope geochemistry.

7.
Geobiology ; 18(3): 348-365, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32011800

RESUMEN

Ediacaran sediments record an unusual global carbon cycle perturbation that has been linked to widespread oceanic oxygenation, the Shuram negative C isotope excursion (NCIE). However, proxy-based estimates of global ocean redox conditions during this event have been limited largely due to proxy specificity (e.g., euxinic sediments for Mo and U isotopes). Modern global seawater documents a homogenous Tl isotope composition (ε205 Tl = -6.0) due to significant manganese oxide burial, which is recorded in modern euxinic sediments. Here, we provide new data documenting that sediments deposited beneath reducing but a non-sulfidic water column from the Santa Barbara Basin (ε205 Tl = -5.6 ± 0.1) also faithfully capture global seawater Tl isotope values. Thus, the proxy utilization of Tl isotopes can extend beyond strictly euxinic settings. Second, to better constrain the global redox conditions during the Shuram NCIE, we measured Tl isotopes of locally euxinic and ferruginous shales of the upper Doushantuo Formation, South China. The ε205 Tl values of these shales exhibit a decreasing trend from ≈-3 to ≈-8, broadly coinciding with the onset of Shuram NCIE. There are ε205 Tl values (-5.1 to -7.8) during the main Shuram NCIE interval that approach values more negative than modern global seawater. These results suggest that manganese oxide burial was near or even greater than modern burial fluxes, which is likely linked to an expansion of oxic conditions. This ocean oxygenation may have been an important trigger for the Shuram NCIE and evolution of Ediacaran-type biota. Subsequently, Tl isotopes show an increasing trend from the modern ocean value to values near the modern global inputs or even heavier (ε205 Tl ≈ -2.5 ~ 0.4), occurring prior to recovery from the NCIE. These records may suggest that there was a decrease in the extent of oxygenated conditions in the global oceans during the late stage of the Shuram NCIE.


Asunto(s)
Agua de Mar/química , China , Sedimentos Geológicos , Isótopos , Océanos y Mares , Talio
8.
Biomater Sci ; 8(6): 1502-1535, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-31994566

RESUMEN

Surface wettability plays an important role in regulating biomolecule adhesion behaviors. The biomolecule adhesion behaviors of superwettable surfaces have become an important topic as an important part of the interactions between materials and organisms. In addition to general research on the moderate wettability of surfaces, the studies of biomolecule adhesion behaviors extend to extreme wettability ranges such as superhydrophobic, superhydrophilic and slippery surfaces and attract both fundamental and practical interest. In this review, we summarize the recent studies on biomolecule adhesion behaviors on superwettable surfaces, especially superhydrophobic, superhydrophilic and slippery surfaces. The first part will focus on the influence of extreme wettability on cell adhesion behaviors. The second part will concentrate on the adhesion behaviors of biomacromolecules on superwettable surfaces including proteins and nucleic acids. Finally, the influences of wettability on small molecule adhesion behaviors on material surfaces have also been investigated. The mechanism of superwettable surfaces and their influences on biomolecule adhesion behaviors have been studied and highlighted.


Asunto(s)
Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Animales , Biomimética , Adhesión Celular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Humectabilidad
9.
Fungal Biol ; 123(4): 274-282, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30928036

RESUMEN

The fungus Purpureocillium lavendulum (formally Paecilomyces lilacinus) is a natural enemy of insects and plant-parasitic nematodes, and has been used as an important bio-control agent against agricultural pests all over the world. In order to understand the genetic mechanisms governing its biocontrol efficiency and other biological processes, an effective gene disruption system is needed. Here we report the development of an efficient system which integrates selective markers that differ from Purpureocillium lilacinum, a one-step construction method for gene knockout plasmids, and a ku80 knockout strain for efficient homologous recombination. With this system, we effectively disrupted the transcription factors in the central regulation pathway of sporulation and a serine protease which were contributed to nematode infection, demonstrating this system as an efficient gene disrupting system for further characterization of genes involved in the development and pathogenesis of this fungus.


Asunto(s)
Técnicas de Inactivación de Genes/métodos , Genética Microbiana/métodos , Hypocreales/genética , Biología Molecular/métodos , Vectores Genéticos , Recombinación Homóloga , Plásmidos , Selección Genética
10.
Environ Pollut ; 216: 9-17, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27232452

RESUMEN

In practice, stable Cd isotope ratios are being applied to trace pollution sources in the natural environment. However, Cd isotope fractionation during weathering processes is not yet fully understood. We investigated Cd isotope fractionation of PbZn ore in leaching experiments and in the environment under natural weathering processes. Our leaching experiments demonstrated that the leachate was enriched with heavy Cd isotopes, relative to initial and residual samples (Δ(114/110)Cdleachate - initial state = 0.40-0.50‰, Δ(114/110)Cdleachate -residual state = 0.36-0.53‰). For natural samples, δ(114/110)Cd values of stream sediments were higher than those of the corresponding soil samples collected from the riverbank, Δ(114/110)Cdstream sediment -soil can be up to 0.50‰. This observation is consistent with our leaching experiments, which indicate significant Cd isotope fractionation during natural weathering processes. Therefore, natural contributions should be considered when using Cd isotopes to trace anthropogenic pollution in water and sediment systems.


Asunto(s)
Cadmio/química , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Plomo/química , Zinc/química , Cadmio/análisis , Fraccionamiento Químico , Sedimentos Geológicos/química , Isótopos , Plomo/análisis , Minería , Suelo/química , Tiempo (Meteorología) , Zinc/análisis
11.
Sci Rep ; 6: 25273, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27121538

RESUMEN

Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ(114/110)Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ(114/110)Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA