Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124252

RESUMEN

Rice blast caused by the pathogenic fungus Magnaporthe oryzae poses a significant threat to rice cultivation. The identification of robust resistance germplasm is crucial for breeding resistant varieties. In this study, we employed functional molecular markers for 10 rice blast resistance genes, namely Pi1, Pi2, Pi5, Pi9, Pia, Pid2, Pid3, Pigm, Pikh, and Pita, to assess blast resistance across 91 indica rice backbone varieties in South China. The results showed a spectrum of resistance levels ranging from highly resistant (HR) to highly susceptible (HS), with corresponding frequencies of 0, 19, 40, 27, 5, and 0, respectively. Yearly correlations in blast resistance genes among the 91 key indica rice progenitors revealed Pid2 (60.44%), Pia (50.55%), Pita (45.05%), Pi2 (32.97%), Pikh (4.4%), Pigm (2.2%), Pi9 (2.2%), and Pi1 (1.1%). Significant variations were observed in the distribution frequencies of these 10 resistance genes among these progenitors across different provinces. Furthermore, as the number of aggregated resistance genes increased, parental resistance levels correspondingly improved, though the efficacy of different gene combinations varied significantly. This study provides the initial steps toward strategically distributing varieties of resistant indica rice genotypes across South China.

2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000188

RESUMEN

Premature leaf senescence significantly reduces rice yields. Despite identifying numerous factors influencing these processes, the intricate genetic regulatory networks governing leaf senescence demand further exploration. We report the characterization of a stably inherited, ethyl methanesulfonate(EMS)-induced rice mutant with wilted leaf tips from seedling till harvesting, designated lts2. This mutant exhibits dwarfism and early senescence at the leaf tips and margins from the seedling stage when compared to the wild type. Furthermore, lts2 displays a substantial decline in both photosynthetic activity and chlorophyll content. Transmission electron microscopy revealed the presence of numerous osmiophilic granules in chloroplast cells near the senescent leaf tips, indicative of advanced cellular senescence. There was also a significant accumulation of H2O2, alongside the up-regulation of senescence-associated genes within the leaf tissues. Genetic mapping situated lts2 between SSR markers Q1 and L12, covering a physical distance of approximately 212 kb in chr.1. No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and subsequent DNA and bulk segregant analysis (BSA) sequencing analyses only identified a single nucleotide substitution (C-T) in the exon of LOC_Os01g35860. These findings position the lts2 mutant as a valuable genetic model for elucidating chlorophyll metabolism and for further functional analysis of the gene in rice.


Asunto(s)
Clorofila , Mutación , Oryza , Hojas de la Planta , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Senescencia de la Planta/genética , Mapeo Cromosómico , Fenotipo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Genes de Plantas , Peróxido de Hidrógeno/metabolismo
3.
Curr Issues Mol Biol ; 46(4): 3741-3751, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38666963

RESUMEN

The "Indica to Japonica" initiative in China focuses on adapting Japonica rice varieties from the northeast to the unique photoperiod and temperature conditions of lower latitudes. While breeders can select varieties for their adaptability, the sensitivity to light and temperature often complicates and prolongs the process. Addressing the challenge of cultivating high-yield, superior-quality Japonica rice over expanded latitudinal ranges swiftly, in the face of these sensitivities, is critical. Our approach harnesses the CRISPR-Cas9 technology to edit the EHD1 gene in the premium northeastern Japonica cultivars Jiyuanxiang 1 and Yinongxiang 12, which are distinguished by their exceptional grain quality-increased head rice rates, gel consistency, and reduced chalkiness and amylose content. Field trials showed that these new ehd1 mutants not only surpass the wild types in yield when grown at low latitudes but also retain the desirable traits of their progenitors. Additionally, we found that disabling Ehd1 boosts the activity of Hd3a and RFT1, postponing flowering by approximately one month in the ehd1 mutants. This research presents a viable strategy for the accelerated breeding of elite northeastern Japonica rice by integrating genomic insights with gene-editing techniques suitable for low-latitude cultivation.

4.
Front Plant Sci ; 13: 1105882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743577

RESUMEN

Because of labor shortages or resource scarcity, direct seeding is the preferred method for rice (Oryza sativa. L) cultivation, and it necessitates direct seeding at the current density. In this study, two density of direct seeding with high and normal density were selected to identify the genes involved in shade-avoidance syndrome. Phenotypic and gene expression analysis showed that densely direct seeding (DDS) causes a set of acclimation responses that either induce shade avoidance or toleration. When compared to normal direct seeding (NDS), plants cultivated by DDS exhibit constitutive shade-avoidance syndrome (SAS), in which the accompanying solar radiation drops rapidly from the middle leaf to the base leaf during flowering. Simulation of shade causes rapid reduction in phytochrome gene expression, changes in the expression of multiple miR156 or miR172 genes and photoperiod-related genes, all of which leads to early flowering and alterations in the plant architecture. Furthermore, DDS causes senescence by downregulating the expression of chloroplast synthesis-related genes throughout almost the entire stage. Our findings revealed that DDS is linked to SAS, which can be employed to breed density-tolerant rice varieties more easily and widely.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...