Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 606(Pt 1): 384-392, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34392033

RESUMEN

Earth-abundant transition metal-based bifunctional electrocatalysts are promising alternatives to noble metals for overall water electrolysis, but restricted by low activity and durability. Herein, a three-dimensional phosphorus-doped nickel molybdate/nickel molybdate hydrate @phosphates core-shell nanorod clusters on nickel foam self-supported electrode was fabricated by a combined hydrothermal and phosphating process. The phosphorus doping and phosphate coating induced by phosphating process bring in a synergistic effect to improve the electrical conductivity, provide abundant active surface sites and accelerate the surface reaction for nickel molybdate/nickel molybdate hydrate (NiMoO4/NiMoO4·nH2O) heterostructures. These advantages enable the self-supported electrode to exhibit high hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activity in 1.0 M KOH with low overpotentials of 148 and 260 mV at 10 mA cm-2, respectively. When it was employed both as anode and cathode, a cell voltage of 1.62 V is only required to reach the current density of 10 mA cm-2 in alkaline solution. Especially, the self-supported electrode reveals outstanding durability, which could maintain over 25 h at 10 mA cm-2 for HER, OER or overall water splitting. This work provides a novel avenue to enhance the electrocatalytic performance of the catalysts by synergistically modulating the intrinsic electrical conductivity, active surface sites and surface reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...