Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Chem Commun (Camb) ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011721

RESUMEN

This study describes H2O2-activated photosensitizer nanoparticles (ICyHD NPs), which inhibit histone deacetylase via binding Zn2+ to induce ferroptosis and upregulate the intracellular O2, thus resulting in enhanced photodynamic therapeutic effect. ICyHD NPs exert strong antitumor effects on mice and have improved the therapeutic precision via observing the increase in cellular fluorescence.

2.
Angew Chem Int Ed Engl ; : e202408769, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960984

RESUMEN

The clinical application of photodynamic therapy (PDT) is limited by oxygen-dependence and side effects caused by photosensitizer residues. Photoinitiators based on the H-abstraction reaction can address these challenges because they can generate alkyl radical-killing cells independently of oxygen and undergo rapid bleaching following H-abstraction. Nonetheless, the development of photoinitiators for PDT has been impeded by the absence of effective design strategies. Herein, we have developed aryl-ketone substituted cyanine (ACy-R), the first red-light triggered H-abstraction photoinitiators for hypoxic cancer therapy. These ACy-R molecules inherited the near-infrared absorption of cyanine dye, and aryl-ketone modification imparted H-abstraction capability. Experimental and quantum calculations revealed that modifying the electron-withdrawing groups of the aryl (e.g., ACy-5F) improved the contribution of the O atom to the photon excitation process promoting intersystem crossing and H-abstraction ability. Particularly, ACy-5F rapidly penetrated cells and enriched in the endoplasmic reticulum. Even under severe hypoxia, ACy-5F initiated red-light induced H-abstraction with intracellular biomolecules, inducing necroptosis and ferroptosis. Moreover, ACy-5F was degraded after H-abstraction, thus avoiding the side effects of long-term phototoxicity after therapy. This study not only provides a crucial molecular tool for hypoxic tumors therapy, but also presents a promising strategy for the development of multifunctional photosensitizers and photoinitiators.

3.
J Mater Chem B ; 12(29): 7135-7142, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38952205

RESUMEN

Fluorescence-image guided surgery (FGS) can intraoperatively provide real-time visualization of a tumor incisal edge and high-resolution identification of tumor foci to improve treatment outcomes. In this contribution, we report a fluorescent probe NB-TAM based on intramolecularly folded photoinduced electron transfer (PET), which displayed a prominent turn-on response in the near-infrared (NIR) window upon specific interaction with the estrogen receptor (ER). Significantly, NB-TAM could delineate a clear tumor incisal edge (tumor-to-normal tissue ratio > 5) in a 70-min time window, and was successfully used to guide the facile and precise resection of ER+ breast tumors in mice. To our surprise, NB-TAM was found to be capable of identifying very tiny lung metastatic ER+ breast tumor foci (0.4 × 0.3 mm), and this ultrahigh resolution was essential to effectively promote tumor resection precision and early diagnosis of tiny tumors. These results clearly elucidate the promising application of NB-TAM as a diagnostic agent for intraoperative fluorescence imaging of ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Colorantes Fluorescentes , Imagen Óptica , Receptores de Estrógenos , Animales , Colorantes Fluorescentes/química , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Humanos , Ratones , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/análisis , Ratones Endogámicos BALB C , Ratones Desnudos
4.
Angew Chem Int Ed Engl ; : e202407307, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38868977

RESUMEN

Small organic photothermal agents (PTAs) with absorption bands located in the second near-infrared (NIR-II, 1000-1700 nm) window are highly desirable for effectively combating deep-seated tumors. However, the rarely reported NIR-II absorbing PTAs still suffer from a low molar extinction coefficient (MEC, ϵ), inadequate chemostability and photostability, as well as the high light power density required during the therapeutic process. Herein, we developed a series of boron difluoride bridged azafulvene dimer acceptor-integrated small organic PTAs. The B-N coordination bonds in the π-conjugated azafulvene dimer backbone endow it the strong electron-withdrawing ability, facilitating the vigorous donor-acceptor-donor (D-A-D) structure PTAs with NIR-II absorption. Notably, the PTA namely OTTBF shows high MEC (7.21×104 M-1 cm-1), ultrahigh chemo- and photo-stability. After encapsulated into water-dispersible nanoparticles, OTTBF NPs can achieve remarkable photothermal conversion effect under 1064 nm irradiation with a light density as low as 0.7 W cm-2, which is the lowest reported NIR-II light power used in PTT process as we know. Furthermore, OTTBF NPs have been successfully applied for in vitro and in vivo deep-seated cancer treatments under 1064 nm laser. This study provides an insight into the future exploration of versatile D-A-D structured NIR-II absorption organic PTAs for biomedical applications.

5.
J Mater Chem B ; 12(29): 7113-7121, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38919138

RESUMEN

The clinical application of photodynamic therapy (PDT) has some limitations including poor tumor targeting properties, a high reductive tumor microenvironment, and inefficient activation of single cell death machinery. We herein report pH-sensitive polymeric nanomodulators (NBS-PDMC NPs) for ferroptosis-enhanced photodynamic therapy. NBS-PDMC NPs were constructed using a positively charged type-I photosensitizer (NBS) coordinated with a demethylcantharidin (DMC)-decorated block copolymer via electrostatic interactions. NBS-PDMC NPs had a negative surface charge, which ensures their high stability in bloodstream circulation, while exposure to lysosomal acidic environments reverses their surface charge to positive for tumor penetration and the release of DMC and NBS. Under NIR light irradiation, NBS generated ROS to induce cell damage; in the meantime, DMC inhibited the expression of the GPX4 protein in tumor cells and promoted ferroptosis of tumor cells. This polymer design concept provides some novel insights into smart drug delivery and combinational action to amplify the antitumor effect.


Asunto(s)
Ferroptosis , Fotoquimioterapia , Fármacos Fotosensibilizantes , Polímeros , Ferroptosis/efectos de los fármacos , Humanos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Polímeros/química , Polímeros/farmacología , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Nanopartículas/química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Propiedades de Superficie , Línea Celular Tumoral
6.
Adv Mater ; 36(29): e2400196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734875

RESUMEN

The activation of sequential events in the cancer-immunity cycle (CIC) is crucial for achieving effective antitumor immunity. However, formidable challenges, such as innate and adaptive immune resistance, along with the off-target adverse effects of nonselective immunomodulators, persist. In this study, a tumor-selective nano-regulator named PNBJQ has been presented, focusing on targeting two nonredundant immune nodes: inducing immunogenic cancer cell death and abrogating immune resistance to fully activate endogenous tumor immunity. PNBJQ is obtained by encapsulating the immunomodulating agent JQ1 within a self-assembling system formed by linking a Type-I photosensitizer to polyethylene glycol through a hypoxia-sensitive azo bond. Benefiting from the Type-I photosensitive mechanism, PNBJQ triggers the immunogenic cell death of hypoxic tumors under near-infrared (NIR) light irradiation. This process resolves innate immune resistance by stimulating sufficient cytotoxic T-lymphocytes. Simultaneously, PNBJQ smartly responds to the hypoxic tumor microenvironment for precise drug delivery, adeptly addressing adaptive immune resistance by using JQ1 to downregulate programmed death ligand 1 (PD-L1) and sustaining the response of cytotoxic T lymphocytes. The activatable synergic photoimmunotherapy promotes an immune-promoting tumor microenvironment by activating an iterative revolution of the CIC, which remarkably eradicates established hypoxic tumors and suppresses distal lesions under low light dose irradiation.


Asunto(s)
Nanopartículas , Fármacos Fotosensibilizantes , Animales , Ratones , Línea Celular Tumoral , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos , Triazoles/química , Triazoles/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Inmunoterapia , Azepinas/química , Azepinas/farmacología , Polietilenglicoles/química , Hipoxia Tumoral/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Antígeno B7-H1/metabolismo , Rayos Infrarrojos
7.
Int J Ophthalmol ; 17(5): 785-793, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766333

RESUMEN

AIM: To observe the effect of ghrelin, a growth hormone-releasing peptide, on retinal angiogenesis in vitro under high glucose (HG) stress and to explore the possible mechanism of autophagy. METHODS: Human retinal microvascular endothelial cells (HRMECs) were treated with high concentration of glucose alone or in combination with ghrelin. The cell migration, tube formation and the expression of the autophagy-related proteins LC3-II/I, Beclin-1, p62, phosphorylated AKT (p-AKT)/AKT and phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR were detected. Then, to clarify the correlation between ghrelin effect and autophagy, AKT inhibitor VIII was adopted to treat HRMECs, and cell migration, tube formation as well as the protein expressions of LC3-II/I, Beclin-1 and p62 were observed. RESULTS: Under HG stress, ghrelin inhibited migration and tube formation of HRMECs. Ghrelin inhibited the increases in the protein levels of LC3-II/I, Beclin-1 and the decreases in the protein levels of p62, p-AKT/AKT and p-mTOR/mTOR induced by HG stress. Moreover, under the action of AKT/mTOR pathway inhibitors, the effects of ghrelin on migration and tube formation were both reduced. In addition, the expression of LC3-II/I and Beclin-1 were significantly up-regulated and the expression of p62 was down-regulated. CONCLUSION: Retinal angiogenesis under in vitro HG stress can be inhibited by ghrelin through activating AKT/mTOR pathway to inhibit autophagy.

8.
J Am Chem Soc ; 146(19): 12941-12949, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685727

RESUMEN

Nucleic acids are mainly found in the mitochondria and nuclei of cells. Detecting nucleic acids in the mitochondrion and nucleus in cascade mode is crucial for understanding diverse biological processes. This study introduces a novel nucleic acid-based fluorescent styrene dye (SPP) that exhibits light-driven cascade migration from the mitochondrion to the nucleus. By introducing N-arylpyridine on one side of the styrene dye skeleton and a bis(2-ethylsulfanyl-ethy)-amino unit on the other side, we found that SPP exhibits excellent DNA specificity (16-fold, FDNA/Ffree) and a stronger binding force to nuclear DNA (-5.09 kcal/mol) than to mitochondrial DNA (-2.59 kcal/mol). SPP initially accumulates in the mitochondrion and then migrates to the nucleus within 10 s under light irradiation. By tracking the damage to nucleic acids in apoptotic cells, SPP allows the successful visualization of the differences between apoptosis and ferroptosis. Finally, a triphenylamine segment with photodynamic effects was incorporated into SPP to form a photosensitizer (MTPA-SPP), which targets the mitochondria for photosensitization and then migrates to the nucleus under light irradiation for enhanced photodynamic cancer cell treatment. This innovative nucleic acid-based fluorescent molecule with light-triggered mitochondrion-to-nucleus migration ability provides a feasible approach for the in situ identification of nucleic acids, monitoring of subcellular physiological events, and efficient photodynamic therapy.


Asunto(s)
Núcleo Celular , Colorantes Fluorescentes , Luz , Mitocondrias , Imagen Óptica , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/química , Núcleo Celular/metabolismo , Núcleo Celular/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , ADN/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Células HeLa , Apoptosis/efectos de los fármacos , Fotoquimioterapia , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen
9.
Biomaterials ; 308: 122571, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636132

RESUMEN

The abuse and overuse of antibiotics let drug-resistant bacteria emerges. Antibacterial photodynamic therapy (APDT) has shown outstanding merits to eliminate the drug-resistant bacteria via cytotoxic reactive oxygen species produced by irradiating photosensitizer. However, most of photosensitizers are not effective for Gram-negative bacteria elimination. Herein conjugates of NBS, a photosensitizer, linked with one (NBS-DPA-Zn) or two (NBS-2DPA-Zn) equivalents of zinc-dipicolylamine (Zn-DPA) have been designed to achieve the functional recognition of different bacteria. Due to the cationic character of NBS and metal transfer channel effect of Zn-DPA, NBS-DPA-Zn exhibited the first regent to distinguish P. aeruginosa from other Gram-negative bacteria. Whereas NBS-2DPA-Zn showed broad-spectrum antibacterial effect because the two arm of double Zn-DPA enhanced interactions with anionic membranes of bacteria, led the bacteria aggregation and thus provided the efficacy of APDT to bacteria and corresponding biofilm. In combination with a hydrogel of Pluronic, NBS-2DPA-Zn@gel shows promising clinical application in mixed bacterial diabetic mouse model infection. This might propose a new method that can realize functional identification and elimination of bacteria through intelligent regulation of Zn-DPA, and shows excellent potential for antibacterial application.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Picolinas , Ácidos Picolínicos , Animales , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Ratones , Ácidos Picolínicos/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Biopelículas/efectos de los fármacos , Zinc/química , Pseudomonas aeruginosa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico
10.
Chem Commun (Camb) ; 60(22): 3031-3034, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38391081

RESUMEN

The non-peptide-based fluorescent probe QMC11 is capable of specifically targeting asparagine endopeptidase (AEP) and imaging cellular endogenous AEP. The motion of the probe can be restricted by AEP to activate fluorescence while keeping a low background signal.


Asunto(s)
Cisteína Endopeptidasas , Colorantes Fluorescentes
11.
Adv Mater ; 36(21): e2313460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38364230

RESUMEN

Proteolysis targeting chimera (PROTAC) has recently emerged as a promising strategy for inducing post-translational knockdown of target proteins in disease treatment. The degradation of bromodomain-containing protein 4 (BRD4), an essential nuclear protein for gene transcription, induced by PROTAC is proposed as an epigenetic approach to treat breast cancer. However, the poor membrane permeability and indiscriminate distribution of PROTAC in vivo results in low bioavailability, limiting its development and application. Herein, a nano "targeting chimera" (abbreviated as L@NBMZ) consisting of BRD4-PROTAC combined with a photosensitizer, to serve as the first augmenter for photo-driven pyroptosis in breast cancer, is developed. With excellent BRD4 degradation ability, high biosafety, and biocompatibility, L@NBMZ blocks gene transcription by degrading BRD4 through proteasomes in vivo, and surprisingly, induces the cleavage of caspase-3. This type of caspase-3 cleavage is synergistically amplified by light irradiation in the presence of photosensitizers, leading to efficient photo-driven pyroptosis. Both in vitro and in vivo outcomes demonstrate the remarkable anti-cancer efficacy of this augmenter, which significantly inhibits the lung metastasis of breast cancer in vivo. Thus, the photo-PROTAC "targeting chimera" augmenter construction strategy may pave a new way for expanding PROTAC applications within anti-cancer paradigms.


Asunto(s)
Neoplasias de la Mama , Fármacos Fotosensibilizantes , Proteolisis , Piroptosis , Factores de Transcripción , Humanos , Piroptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Proteolisis/efectos de los fármacos , Línea Celular Tumoral , Animales , Factores de Transcripción/metabolismo , Femenino , Proteínas de Ciclo Celular/metabolismo , Ratones , Caspasa 3/metabolismo , Luz , Antineoplásicos/química , Antineoplásicos/farmacología , Proteínas que Contienen Bromodominio
12.
Anal Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38327078

RESUMEN

Nucleic acid is one of the most important substances in organisms, and its dynamic changes are closely related to physiological processes. Nucleic acid labeling is conducive to providing important information for the early diagnosis and treatment of pathophysiological processes. Here, we utilized the transfer mechanism between carbon sources and CDs to synthesize wavelength-adjustable N-CDs for the nucleic acid image. Along with the increased graphite nitrogen (from 10.6 to 30.1%) gradually by the precise design of the nitrogen structure in carbon sources (e.g., primary amines, secondary amines, tertiary amines, and liking graphite-nitrogen), the energy gap of CDs reduced, resulting in adjustable wavelength from visible to near-infrared range (from 461 nm/527 nm to 650 nm/676 nm). Furthermore, N-CDs exhibited a selective affinity for nucleic acids, especially RNA. Therefore, N-CDs support an efficient platform for real-time tracking of RNA dynamic changes in cells.

13.
ACS Appl Bio Mater ; 7(2): 1115-1124, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38194480

RESUMEN

Monoamine oxidase A (MAO-A) is a dimeric flavoprotein that is found in the mitochondrial membrane. Currently, there is a lack of near-infrared fluorescent probes (NIR-FPs) with good specificity and high sensitivity for detecting MAO-A, making it difficult to accurately recognize and image cells in vitro and in vivo. In this study, the NIR-FP DDM-NH2 was designed and synthesized in order to detect MAO-A specifically in live biological systems. The probe comprised two functional components: dicyanoisophosphone as an NIR dye precursor and alanine as a recognition moiety. After identifying MAO-A, the probe exhibited an NIR emission peak at 770 nm with a significant Stokes shift (180 nm), 11-fold response factor, low detection limit of 99.7 nM, and considerably higher affinity toward MAO-A than that toward MAO-B, indicating high sensitivity. In addition, DDM-NH2 was effective when applied to the image-based assessment of MAO-A activity in HeLa cells, zebrafish, and tumor-bearing mice, demonstrating great potential for visualization-based research and MAO-A application in vivo.


Asunto(s)
Monoaminooxidasa , Pez Cebra , Humanos , Ratones , Animales , Células HeLa , Fluorescencia , Colorantes Fluorescentes
14.
Org Lett ; 26(3): 664-669, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38226908

RESUMEN

A visible-light-driven iron-catalyzed C(sp3)-H amination of diphenylmethane derivatives with 1,2,3,4-tetrazoles under mild conditions has been developed. The reaction proceeds with photosensitizer-free conditions and features satisfactory to good yields. Mechanistic studies revealed that the reaction proceeded via an iron-nitrene intermediate, and H atom abstraction was the rate-determining step. Computational studies showed that the denitrogenation of 1,2,3,4-tetrazole depends on the conversion of the sextet ground state of 1,2,3,4-tetrazole-bounding iron species to the quartet spin state under visible-light irradiation.

15.
Adv Mater ; 36(4): e2309711, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37983647

RESUMEN

As an iron-dependent lipid peroxidation (LPO) mediated cell death pathway, ferroptosis offers promises for anti-tumor treatment. Photodynamic therapy (PDT) is an ideal way to generate reactive oxygen species (ROS) for LPO. However, the conventional PDT normally functions on subcellular organelles, such as endoplasmic reticulum, mitochondria, and lysosome, causing rapid cell death before triggering ferroptosis. Herein, the first lipid droplet (Ld)-targeting type I photosensitizer (PS) with enhanced superoxide anion (O2 -· ) production, termed MNBS, is reported. The newly designed PS selectively localizes at Ld in cells, and causes cellular LPO accumulation by generating sufficient O2 -· upon irradiation, and subsequently induces ferroptosis mediated chronical PDT, achieving high-efficient anti-tumor PDT in hypoxia and normoxia. Theoretical calculations and comprehensive characterizations indicate that the Ld targeting property and enhanced O2 -· generation of MNBS originate from the elevated H-aggregation tendency owing to dispersed molecular electrostatic distribution. Further in vivo studies using MNBS-encapsulated liposomes demonstrate the excellent anti-cancer efficacy as well as anti-metastatic activity. This study offers a paradigm of H-aggregation reinforced type I PS to achieve ferroptosis-mediated PDT.


Asunto(s)
Bencenosulfonatos , Ferroptosis , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes , Peroxidación de Lípido , Gotas Lipídicas , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/metabolismo , Línea Celular Tumoral
16.
Adv Sci (Weinh) ; 11(7): e2305761, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063803

RESUMEN

Pentamethyl cyanine dyes are promising fluorophores for fluorescence sensing and imaging. However, advanced biomedical applications require enhanced control of their excited-state properties. Herein, a synthetic approach for attaching aryl substituents at the C2' position of the thio-pentamethine cyanine (TCy5) dye structure is reported for the first time. C2'-aryl substitution enables the regulation of both the twisted intramolecular charge transfer (TICT) and photoinduced electron transfer (PET) mechanisms to be regulated in the excited state. Modulation of these mechanisms allows the design of a nitroreductase-activatable TCy5 fluorophore for hypoxic tumor photodynamic therapy and fluorescence imaging. These C2'-aryl TCy5 dyes provide a tunable platform for engineering cyanine dyes tailored to sophisticated biological applications, such as photodynamic therapy.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes , Colorantes Fluorescentes/química , Imagen Óptica/métodos
17.
Small ; 20(10): e2304407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880907

RESUMEN

Cuproptosis is a novel form of regulated cell death which guarantees to increase the efficacy of existing anticancer treatments that employ traditional apoptotic therapeutics. However, reducing the amount of undesirable Cu ions released in normal tissue and maximizing Cu-induced cuproptosis therapeutic effects at tumor sites are the major challenges. In this study, exploiting the chemical properties of copper ionophores and the tumor microenvironment, a novel method is developed for controlling the valence of copper ions that cause photoinduced cuproptosis in tumor cells. CJS-Cu nanoparticles (NPs) can selectively induce cuproptosis after cascade reactions through H2 O2 -triggered Cu2+ release, photoirradiation-induced superoxide radical (∙O2 - ) generation, and reduction of Cu2+ to Cu+ by ∙O2 - . The generated reactive oxygen species can result in glutathione depletion and iron-sulfur cluster protein damage and further augmented cuproptosis. CJS-Cu NPs effectively suppressed tumor growth and downregulated the expression of metastasis-related proteins, contributing to the complete inhibition of lung metastasis. Ultimately, this study suggests novel avenues for the manipulation of cellular cuproptosis through photochemical reactions.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Humanos , Cobre , Glutatión , Superóxidos , Apoptosis , Microambiente Tumoral
18.
Adv Healthc Mater ; 13(6): e2302490, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37909241

RESUMEN

The emergence of drug-resistant bacteria, particularly resistant strains of Gram-negative bacteria, such as Pseudomonas aeruginosa, poses a significant threat to public health. Although antibacterial photodynamic therapy (APDT) is a promising strategy for combating drug-resistant bacteria, actively targeted photosensitizers (PSs) remain unknown. In this study, a PS based on dipicolylamine (DPA), known as WZK-DPA-Zn, is designed for the selective identification of P. aeruginosa and drug-resistant Gram-positive bacteria. WZK-DPA-Zn exploits the synergistic effects of DPA-Zn2+ coordination and cellular uptake, which could effectively anchor P. aeruginosa within a brief period (10 min) without interference from other Gram-negative bacteria. Simultaneously, the cationic nature of WZK-DPA-Zn enhances its interaction with Gram-positive bacteria via electrostatic forces. Compared to traditional clinical antibiotics, WZK-DPA-Zn shows exceptional antibacterial activity without inducing drug resistance. This effectiveness is achieved using the APDT strategy when irradiated with white light or sunlight. The combination of WZK-DPA-Zn with Pluronic-based thermosensitive hydrogel dressings (WZK-DPA-Zn@Gel) effectively eliminates mixed bacterial infections and accelerates wound healing, thereby achieving a synergistic effect where "1+1>2." In summary, this study proposes a precise strategy employing DPA-Zn as the targeting moiety of a PS, facilitating the rapid elimination of P. aeruginosa and drug-resistant Gram-positive bacteria using APDT.


Asunto(s)
Aminas , Ácidos Picolínicos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Bacterias Grampositivas , Zinc/farmacología
19.
Medicine (Baltimore) ; 102(50): e36497, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38115357

RESUMEN

White matter hyperintensity (WMH) burden is associated with a higher risk of ischemic stroke. The relationship between WMH and obesity is somewhat controversial which might be interfered by different body composition such as skeletal muscle, fat and bone density. However, few researchers have evaluated the relationship between WMH burden and disaggregated body constituents in acute ischemic stroke (AIS) patients systematically. A total of 352 AIS patients were enrolled in this study. The subcutaneous adipose tissue, erector spinae muscle area and bone density were evaluated on the computed tomography scanning. The burden of WMH was evaluated using the Fazekas scale based on the fluid-attenuated inversion recovery sequence. The severity of overall WMH was defined as none-mild WMH (total Fazekas score 0-2) or moderate-severe WMH (total Fazekas score 3-6). Based on the severity of periventricular WMH (P-WMH) and deep WMH, patients were categorized into either a none-mild (Fazekas score 0-1) group or a moderate-severe (Fazekas score 2-3) group. We found that patients with moderate-severe WMH showed lower bone density and smaller erector spinae muscle area and subcutaneous adipose tissue than none-mild. The logistic regression analysis showed that the bone density was independently associated with moderate-severe overall WMH (odds radio = 0.98, 95% confidence interval, 0.972-0.992, P < .001) and similar results were found in the analyses according to P-WMH (odds radio = 0.98, 95% confidence interval, 0.972-0.992, P < .001). These findings suggest that among the AIS body composition, the bone density is independently associated with the severity of overall WMH and P-WMH.


Asunto(s)
Accidente Cerebrovascular Isquémico , Leucoaraiosis , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Sustancia Blanca/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Imagen por Resonancia Magnética
20.
Adv Mater ; 35(47): e2308205, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37792315

RESUMEN

Ultrasound, featuring deep tissue penetration and noninvasiveness, offers a new opportunity to activate functional materials in a tumor-selective manner. However, very few direct ultrasound-responsive redox systems are applicable under therapeutic ultrasound (1 MHz). Herein, the investigations on nanoprodrug of DHE@PEG-SS-DSPE are reported, which exhibit glutathione-activated release of dihydroethidium (DHE) in tumor cells. DHE is stable with good biosafety and is transformed into cytotoxic ethidium to induce DNA damage under medical ultrasound irradiation, accompanied by the generation of reactive oxygen species. Further, DHE@PEG-SS-DSPE could effectively induce ferroptosis through glutathione depletion, lipid peroxide accumulation, and downregulation of glutathione peroxidase 4. In vivo studies confirmed that DHE@PEG-SS-DSPE nanoparticles effectively inhibit both the growth of solid tumors and the expression of metastasis-related proteins in mice, thus effectively inhibiting lung metastasis. This DHE-based prodrug nanosystem could lay a foundation for the design of ultrasound-driven therapeutic agents.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Profármacos , Ratones , Animales , Profármacos/farmacología , Profármacos/uso terapéutico , Profármacos/metabolismo , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pulmonares/patología , Glutatión , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...