Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Mol Pharmacol ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38485683

RESUMEN

BACKGROUND: While chemotherapy treatment demonstrates its initial effectiveness in eliminating the majority of the tumor cell population, nevertheless, most patients relapse and eventually succumb to the disease upon its recurrence. One promising approach is to explore novel, effective chemotherapeutic adjuvants to enhance the sensitivity of cancer cells to conventional chemotherapeutic agents. In the present study, we explored the effect of quercetin on the sensitivity of colorectal cancer (CRC) cells to conventional chemotherapeutic agent 5-fluorouracil (5-FU) and the molecular mechanisms. METHODS: MTT assay, colony formation assay and Hoechst staining were performed to investigate the growth inhibition effect of quercetin alone or combined with 5-FU. The expression levels of apoptosis- and autophagy-related proteins were assessed by western blotting. Intracellular ROS was detected using DCFH-DA. The change in the mitochondrial membrane potential was measured by a JC-1 probe. The effect of quercetin on mitochondrial morphology was examined using a mitochondrial-specific fluorescence probe, Mito-Tracker red. RESULTS: The results demonstrated quercetin-induced apoptosis and autophagy, as well as imbalanced ROS, decreased mitochondrial membrane potential, and Drp-1-mediated mitochondrial fission in CRC cells. Autophagy blockage with autophagy inhibitor chloroquine (CQ) enhanced quercetininduced cytotoxicity, indicating that quercetin-induced cytoprotective autophagy. Meanwhile, quercetin enhanced the sensitivity of CRC cells to 5- FU via the induction of mitochondrial fragmentation, which could be further enhanced when the quercetin-induced protective autophagy was blocked by CQ. CONCLUSION: Our findings suggested that quercetin could induce protective autophagy and Drp-1-mediated mitochondrial fragmentation and enhance the sensitivity of CRC cells to conventional agent 5-FU, which not only suggests that quercetin may act as a chemotherapeutic adjuvant but also implies that the regulation of autophagic flux may be a potential therapeutic strategy for colorectal cancer.

2.
Cell Biochem Funct ; 42(2): e3984, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494666

RESUMEN

Cancer has become a global public health problem and its harmful effects have received widespread attention. Conventional treatments such as surgical resection, radiotherapy and other techniques are applicable to clinical practice, but new drugs are constantly being developed and other therapeutic approaches, such as immunotherapy are being applied. In addition to studying the effects on individual tumor cells, it is important to explore the role of tumor microenvironment on tumor cell development since tumor cells do not exist alone but in the tumor microenvironment. In the tumor microenvironment, tumor cells are interconnected with other stromal cells and influence each other, among which tumor-associated macrophages (TAMs) are the most numerous immune cells. At the same time, it was found that cancer cells have different levels of autophagy from normal cells. In cancer therapy, the occurrence of autophagy plays an important role in promoting tumor cell death or inhibiting tumor cell death, and is closely related to the environment. Therefore, elucidating the regulatory role of autophagy between TAMs and tumor cells may be an important breakthrough, providing new perspectives for further research on antitumor immune mechanisms and improving the efficacy of cancer immunotherapy.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/patología , Macrófagos/metabolismo , Neoplasias/patología , Diferenciación Celular , Inmunoterapia/métodos , Autofagia , Microambiente Tumoral
3.
PeerJ ; 11: e16130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37786582

RESUMEN

Gastrointestinal cancer has always been one of the most urgent problems to be solved, and it has become a major global health issue. Microorganisms in the gastrointestinal tract regulate normal physiological and pathological processes. Accumulating evidence reveals the role of the imbalance in the microbial community during tumorigenesis. Autophagy is an important intracellular homeostatic process, where defective proteins and organelles are degraded and recycled under stress. Autophagy plays a dual role in tumors as both tumor suppressor and tumor promoter. Many studies have shown that autophagy plays an important role in response to microbial infection. Here, we provide an overview on the regulation of the autophagy signaling pathway by microorganisms in gastrointestinal cancer.


Asunto(s)
Autofagia , Neoplasias Gastrointestinales , Humanos , Autofagia/genética , Neoplasias Gastrointestinales/genética , Genes Supresores de Tumor , Carcinogénesis , Transformación Celular Neoplásica
4.
Front Pharmacol ; 12: 764015, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744744

RESUMEN

Background: Reactive oxygen species (ROS) act as signal mediators to induce tumorigenesis. Objective: This study aims to explore whether chemokine CXCL14 is involved in the proliferation and migration of ROS-induced colorectal cancer (CRC) cells. Methods: The proliferative and migratory capacities of CRC cells treated with or without H2O2 were measured by various methods, including the CKK-8 assay, colony formation assay, flow cytometry, wounding healing assay, and migration assay. Results: The results revealed that H2O2 promoted the proliferation and migration of CRC cells by regulating the cell cycle progression and the epithelial to mesenchymal transition (EMT) process. Furthermore, we noted that the expression level of CXCL14 was elevated in both HCT116 cells and SW620 cells treated with H2O2. An antioxidant N-Acetyl-l-cysteine (NAC) pretreatment could partially suppress the CXCL14 expression in CRC cells treated with H2O2. Next, we constructed CRC cell lines stably expressing CXCL14 (HCT116/CXCL14 and SW620/CXCL14) and CRC cell lines with empty plasmid vectors (HCT116/Control and SW620/Control) separately. We noted that both H2O2 treatment and CXCL14 over-expression could up-regulate the expression levels of cell cycle-related and EMT-related proteins. Moreover, the level of phosphorylated ERK (p-ERK) was markedly higher in HCT116/CXCL14 cells when compared with that in HCT116/Control cells. CXCL14-deficiency significantly inhibited the phosphorylation of ERK compared with control (i.e., scrambled shNCs). H2O2 treatment could partially restore the expression levels of CXCL14 and p-ERK in HCT116/shCXCL14 cells. Conclusion: Our studies thus suggest that aberrant ROS may promote colorectal cancer cell proliferation and migration through an oncogenic CXCL14 signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...