Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dev Comp Immunol ; 156: 105176, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582249

RESUMEN

Due to the ongoing global warming, the risk of heatwaves in the oceans is continuously increasing while our understanding of the physiological response of Litopenaeus vannamei under extreme temperature conditions remains limited. Therefore, this study aimed to evaluate the physiological responses of L. vannamei under heat stress. Our results indicated that as temperature rose, the structure of intestinal and hepatopancreatic tissues was damaged sequentially. Activity of immune-related enzymes (acid phosphatase/alkaline phosphatase) initially increased before decreased, while antioxidant enzymes (superoxide dismutase and glutathione-S transferase) activity and malondialdehyde content increased with rising temperature. In addition, the total antioxidant capacity decreased with rising temperature. With the rising temperature, there was a significant increase in the expression of caspase-3, heat shock protein 70, lipopolysaccharide-induced tumor necrosis factor-α, transcriptional enhanced associate domain and yorkie in intestinal and hepatopancreatic tissues. Following heat stress, the number of potentially beneficial bacteria (Rhodobacteraceae and Gemmonbacter) increased which maintain balance and promote vitamin synthesis. Intestinal transcriptome analysis revealed 852 differentially expressed genes in the heat stress group compared with the control group. KEGG functional annotation results showed that the endocrine system was the most abundant in Organismal systems followed by the immune system. These results indicated that heat stress leads to tissue damage in shrimp, however the shrimp may respond to stress through a coordinated interaction strategy of the endocrine system, immune system and gut microbiota. This study revealed the response mechanism of L. vannamei to acute heat stress and potentially provided a theoretical foundation for future research on shrimp environmental adaptations.


Asunto(s)
Microbioma Gastrointestinal , Respuesta al Choque Térmico , Penaeidae , Transcriptoma , Animales , Penaeidae/inmunología , Penaeidae/microbiología , Penaeidae/genética , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/inmunología , Microbioma Gastrointestinal/inmunología , Intestinos/inmunología , Intestinos/microbiología , Sistema Inmunológico/metabolismo , Sistema Inmunológico/inmunología , Perfilación de la Expresión Génica , Hepatopáncreas/inmunología , Hepatopáncreas/metabolismo , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Antioxidantes/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38048025

RESUMEN

Hepcidin, an antimicrobial peptide (AMP), is a well-conserved molecule present in various species such as fish, amphibians, birds, reptiles, and mammals. It exhibits broad-spectrum antimicrobial activity and holds a significant role in the innate immune system of host organisms. The northern snakehead (Channa argus) has become a valuable freshwater fish in China and Asia. In this investigation, the cDNA encoding the hepcidin gene of northern snakehead was cloned and named caHep. The amino acid sequences and protein structure of caHep are similar to those of hepcidins from other fish. The eukaryotic expression product of the caHep gene showed broad-spectrum antibacterial activity. Scanning electron microscope analysis indicated that the caHep peptide inhibited bacterial growth by damaging their cell membranes. Lipopolysaccharide (LPS) injection induced significant expression of caHep, implying the involvement of caHep in the innate immune response of northern snakeheads. This investigation showed that the caHep peptide is potentially a robust antibacterial drug against bacterial diseases in aquaculture animals.

3.
Animals (Basel) ; 13(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37370546

RESUMEN

Today, large-scale Penaeus monodon farms no longer incubate eggs but instead purchase larvae from large-scale hatcheries for rearing. The accurate counting of tens of thousands of larvae in these transactions is a challenging task due to the small size of the larvae and the highly congested scenes. To address this issue, we present the Penaeus Larvae Counting Strategy (PLCS), a simple and efficient method for counting Penaeus monodon larvae that only requires a smartphone to capture images without the need for any additional equipment. Our approach treats two different types of keypoints as equip keypoints based on keypoint regression to determine the number of shrimp larvae in the image. We constructed a high-resolution image dataset named Penaeus_1k using images captured by five smartphones. This dataset contains 1420 images of Penaeus monodon larvae and includes general annotations for three keypoints, making it suitable for density map counting, keypoint regression, and other methods. The effectiveness of the proposed method was evaluated on a real Penaeus monodon larvae dataset. The average accuracy of 720 images with seven different density groups in the test dataset was 93.79%, outperforming the classical density map algorithm and demonstrating the efficacy of the PLCS.

4.
Fish Shellfish Immunol ; 139: 108845, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37257571

RESUMEN

The reproduction, development and growth of shrimp were hindered by cold stress, and even death was caused in severe cases. Moreover, huge economic losses to the shrimp aquaculture industry were caused every year by cold currents. The purpose of this study was to investigate the potential protective effects of water additives on the cold stress resistance of Pacific white shrimp (Litopenaeus vannamei) and their ability to improve the survival and stress response of the shrimp. Three potential cold-resistant additives adenosine triphosphate (A), soybean phospholipid (SP) and Clostridium butyricum (CB) on Pacific white shrimp under cold stress were added to the water with three concentrations for each additive. The mortality, activities of antioxidation enzymes and expression of anti-stress related genes in each group under cold stress were detected. The results showed that the cumulative mortality of low concentration for adenosine triphosphate (AL) and soybean phospholipid (SPL), medium concentration for soybean phospholipid (SPM) and high concentration for Clostridium butyricum (CBH) groups were significantly lower than that of the control (C) group when temperature maintained at 13 °C for 6 days. Total antioxidant capacity (T-AOC) content in shrimp plasma was significantly higher, while malondialdehyde (MDA) content was significantly lower than that in the C group. Gene expression analysis showed that 0.4 mg/L of adenosine triphosphate could regulate the immune defense ability and decrease apoptosis level of Pacific white shrimp under cold stress. Soybean phospholipid (2 mg/L) could enhance the immune ability of hepatopancreas, and Clostridium butyricum (10 mg/L) could significantly increase the expression of stress-related genes in shrimp intestine. Overall, these findings suggested that adenosine triphosphate and soybean phospholipid have the potential to be used as cold-resistant additives in Pacific white shrimp culture. This study provided valuable insights into addressing the problem of cold stress in shrimp culture.


Asunto(s)
Respuesta al Choque por Frío , Penaeidae , Animales , Antioxidantes/metabolismo , Intestinos , Adenosina Trifosfato , Fosfolípidos
5.
Artículo en Inglés | MEDLINE | ID: mdl-36707042

RESUMEN

Aeromonas hydrophila can pose a great threat to fish survival. In this study, we investigated the differential immune and redox response in gut-liver axis of hybrid fish (WR) undergoing gut infection. WR anally intubated with A. hydrophila showed severe midgut injury with decreased length-to-width ratios of villi along with GC hyperplasia and enhanced antioxidant activities, but expression profiles of cytokines, chemokines, antibacterial molecules, redox sensors and tight junction proteins decreased dramatically. In contrast, immune-related gene expressions and antioxidant activities increased significantly in liver of WR following gut infection with A. hydrophila. These results highlighted the differential immune regulation and redox balance in gut-liver axis response to bacterial infection.


Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Carpa Dorada/metabolismo , Aeromonas hydrophila/fisiología , Antioxidantes/metabolismo , Proteínas de Peces/metabolismo , Hígado/metabolismo , Oxidación-Reducción , Enfermedades de los Peces/microbiología , Carpas/metabolismo , Inmunidad Innata
6.
Aquat Toxicol ; 255: 106399, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36680893

RESUMEN

Glyphosate is a widely used broad-spectrum herbicide, its pollution to the surrounding conditions can't be ignored. It has been reported that glyphosate has poisonous impacts on aquatic animals. In this study, juvenile Litopenaeus vannamei (L. vannamei) was exposed to glyphosate, and the lethal concentration 50 (LC50) of glyphosate to juvenile L. vannamei for 48 h was 47.6 mg/L. The histological analysis for intestine and hepatopancreas and the intestinal microorganisms of L. vannamei were evaluated after 48 h of exposure to glyphosate with LC50. The histological analysis results showed that the lumen of hepatic tubules was diffused and deformed, the hepatic tubules were ruptured and intestinal villi were fallen off seriously after exposure to glyphosate for 48 h Moreover, the intestinal microbial composition and structure of L. vannamei were changed, with the abundance of Alphaproteobacteria increased significantly. The abundance of Rhodobacteraceae, Vibrio and Legionella increased, but there was no significant difference. The abundance of Bacillus, Paraburkholderia, Enhydrobacter, Comamonas and Alkanindiges decreased significantly. However, the homeostasis of intestinal microorganisms was destroyed. Phenotypic prediction of the two groups of microorganisms revealed a significant increase in the abundance of Facultatively Anaerobic in the glyphosate challenged group. This study suggested that hepatopancreas and intestinal tissue of L. vannamei were seriously damaged after 48 h of exposure to glyphosate with LC50, and intestinal microbial homeostasis was disrupted.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Vibrio , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Intestinos , Hepatopáncreas , Glifosato
7.
Fish Shellfish Immunol ; 128: 466-473, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35987503

RESUMEN

Litopenaeus vannamei (L. vannamei) is the most economically valuable cultured shrimp in the world, while Gram-negative bacteria infection causes huge economic losses to shrimp culture. In this study, we performed transcriptome sequencing of the hepatopancreas in L. vannamei after lipopolysaccharide (LPS, the cell wall component of Gram-negative bacteria) injection to investigate the response of shrimp under Gram-negative bacteria invasion. A total of 306 differentially expressed genes (DEGs) (70 up- and 236 down-regulated) were identified in the LPS treatment group (L group) when compared to their expression levels in the control group (C group). The oxidoreductase activity (GO:0016491) in the molecular function category was enriched in the LPS-responsive DEGs in GO annotation, and the metabolism of xenobiotics by cytochrome P450 (ko00980) was the most enriched pathway in KEGG annotation. The transcriptome profiling revealed that the toll like receptor, C-type lectin receptor, and ß-1,3-glucan binding protein were involved in the recognition of LPS during its early invasion stage. Although LPS could reduce the metabolic ability of exogenous substances, induce inflammation and reduce antioxidant capacity, L. vannamei could maintain its homeostasis by improving immunity, enhancing anti-stress ability and reducing apoptosis. Our research provides the first transcriptome profiling for the L. vannamei hepatopancreas after LPS injection. These results could offer a valuable reference on the mechanism of shrimp against Gram-negative bacteria and could provide guidance for shrimp farming.


Asunto(s)
Hepatopáncreas , Penaeidae , Animales , Antioxidantes/metabolismo , Perfilación de la Expresión Génica , Lectinas Tipo C/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Oxidorreductasas/metabolismo , Transcriptoma
8.
J Fish Dis ; 45(10): 1491-1509, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35749280

RESUMEN

Aeromonas hydrophila is a common pathogen of freshwater fish. In this study, A. hydrophila infection was shown to cause tissue damage, trigger physiological changes as well as alter the expression profiles of immune- and metabolic-related genes in immune tissues of red crucian carp (RCC). Transcriptome analysis revealed that acute A. hydrophila infection exerted a profound effect on mitochondrial oxidative phosphorylation linking metabolic regulation to immune response. In addition, we further identified cellular senescence, apoptosis, necrosis and mitogen-activated protein kinase signal pathways as crucial signal pathways in the kidney of RCC subjected to A. hydrophila infection. These findings may have important implications for understanding modulation of immunometabolic response to bacterial infection.


Asunto(s)
Carcinoma de Células Renales , Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Neoplasias Renales , Aeromonas hydrophila/fisiología , Animales , Carpas/metabolismo , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica/veterinaria , Carpa Dorada/genética , Infecciones por Bacterias Gramnegativas/microbiología , Mitocondrias/genética , Mitocondrias/metabolismo , Transcriptoma
9.
Fish Shellfish Immunol ; 126: 197-210, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35609760

RESUMEN

Ferritin M is involved in the regulation of fish immunity. In this study, open reading frame (ORF) sequences of ferritin M from hybrid fish and its parental species were 534 bp. Tissue-specific analysis indicated that the highest level of ferritin M from red crucian carp was observed in kidney, while peaked expressions of ferritin M from white crucian carp and hybrid carp were observed in gill. Elevated levels of ferritin M from hybrid carp and its parental species were detected in immune-related tissues following Aeromonas hydrophila infection or in cultured fish cell lines after lipopolysaccharide (LPS) challenge. Ferritin M overexpression could attenuate NF-κB and TNFα promoter activity in their respective fish cells. Purified ferritin M fusion proteins elicited in vitro binding activity to A. hydrophila and Edwardsiella tarda, lowered bacterial dissemination to tissues and alleviated inflammatory response. Furthermore, treatment with ferritin M fusion proteins could mitigate bacteria-induced liver damage and rescue antioxidant activity. These results suggested that ferritin M in hybrid fish showed a similar immune defense against bacteria infection in comparison with those of its parental species.


Asunto(s)
Infecciones Bacterianas , Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila/fisiología , Animales , Carpas/metabolismo , Ferritinas , Proteínas de Peces , Carpa Dorada
10.
Artículo en Inglés | MEDLINE | ID: mdl-35131431

RESUMEN

Aeromonas hydrophila can threaten the survival of freshwater fish. In this study, A. hydrophila challenge could induce tissue damage, promote antioxidant imbalance as well as alter the transcript levels of oxidative stress indicators, apoptotic genes and metabolic enzyme genes in kidney of red crucian carp (RCC). Metabolomics analysis revealed that A. hydrophila challenge had a profound effect on amino acid metabolism and lipid metabolism. In addition, we further identified dipeptides, fatty acid derivatives, cortisol, choline and tetrahydrocortisone as crucial biomarkers in kidney of RCC subjected to A. hydrophila infection. These results highlighted the importance of metabolic strategy against bacterial infection.


Asunto(s)
Aeromonas hydrophila , Enfermedades de los Peces/microbiología , Carpa Dorada , Infecciones por Bacterias Gramnegativas/veterinaria , Animales , Regulación de la Expresión Génica , Infecciones por Bacterias Gramnegativas/microbiología , Riñón/patología , Especies Reactivas de Oxígeno
11.
Fish Shellfish Immunol ; 121: 437-445, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35065276

RESUMEN

In recent years, the shrimp farming industry encountered significant economic losses induced by Vibrio alginolyticus. In this study, the influence of Vibrio alginolyticus on intestinal histomorphology and microbiome composition in Litopenaeus vannamei were studied. The results showed that the intestinal mucosal epithelial cells of Vibrio group (VA group) injected only with Vibrio alginolyticus showed large area exfoliation at 12 h, and the tissue morphology of intestine recovered at 48 h. Compared with the control group (CK group), the abundance of Proteobacteria was significantly higher (P < 0.05), while the abundance of Actinobacteria was significantly lower after infection with Vibrio alginolyticus. The abundance of Shewanella in intestinal microbiome of Litopenaeus vannamei was significantly higher at 12 h (P < 0.05), but the abundance of Candidatus_Bacilloplasma was significantly lower at 48 h after infection (P < 0.05). In VA group, the diversity of intestinal microbiome was significantly lower at 12 h, which could be caused by the proliferation of Candidatus_Bacilloplasma and Shewanella. All above findings suggested that the stability of the dynamic balance of microbiome in the intestine helped Litopenaeus vannamei to resist pathogen colonization.


Asunto(s)
Microbioma Gastrointestinal , Intestinos , Penaeidae , Vibriosis/veterinaria , Vibrio alginolyticus , Animales , Inmunidad Innata , Intestinos/anatomía & histología , Intestinos/microbiología , Penaeidae/anatomía & histología , Penaeidae/microbiología , Vibriosis/inmunología
12.
Fish Shellfish Immunol ; 120: 547-559, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34923115

RESUMEN

Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila infection could decrease blood cell numbers, promote blood cell damage as well as alter the levels of alkaline phosphatase (ALP), lysozyme (LZM), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in immune-related tissues of red crucian carp (RCC, 2 N = 100) and triploid cyprinid fish (3 N fish, 3 N = 150). In addition, the significant alternation of antioxidant status was observed in PBMCs isolated from RCC and 3 N following LPS stimulation. The core differential expression genes (DEGs) involved in apoptosis, immunity, inflammation and cellular signals were co-expressed differentially in RCC and 3 N following A. hydrophila challenge. NOD-like receptor (NLR) signals appeared to play a critical role in A. hydrophila-infected fish. DEGs of NLR signals in RCCah vs RCCctl were enriched in caspase-1-dependent Interleukin-1ß (IL-1ß) secretion, interferon (IFN) signals as well as cytokine activation, while DEGs of NLR signals in 3Nah vs 3Nctl were enriched in caspase-1-dependent IL-1ß secretion and antibacterial autophagy. These results highlighted the differential signal regulation of different ploidy cyprinid fish to cope with bacterial infection.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Transcriptoma , Aeromonas hydrophila , Animales , Antioxidantes , Células Sanguíneas , Carpas/genética , Carpas/inmunología , Caspasas , Suplementos Dietéticos , Resistencia a la Enfermedad , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Perfilación de la Expresión Génica , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata , Ploidias
13.
Fish Shellfish Immunol ; 118: 369-384, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34571155

RESUMEN

Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila challenge could promote the erythrocyte hemolysis, increase free hemoglobin (FHB) level and generate malondialdehyde (MDA) production in plasma but decrease the levels of total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (ALP) and lysozyme (LZM) of red crucian carp (RCC, 2 N = 100) and triploid hybrid fish (3 N fish, 3 N = 150) following A. hydrophila challenge. Elevated expression levels of heat shock protein 90 alpha (HSP90α), matrix metalloproteinase 9 (MMP-9), free fatty acid receptor 3 (FFAR3), paraoxonase 2 (PON2) and cytosolic phospholipase A2 (cPLA2) were observed in A. hydrophila-infected fish. In addition, A. hydrophila challenge could significantly increase expressions of cortisol, leucine, isoleucine, glutamate and polyunsaturated fatty acids (PUFAs) in RCC and 3 N, while glycolysis and tricarboxylic acid cycle appeared to be inactive. We identified differential fatty acid derivatives and their metabolic networks as crucial biomarkers from metabolic profiles of different ploidy cyprinid fish subjected to A. hydrophila infection. These results highlighted the comparative metabolic strategy of different ploidy cyprinid fish against bacterial infection.


Asunto(s)
Carcinoma de Células Renales , Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Neoplasias Renales , Aeromonas hydrophila , Animales , Carpas/genética , Eritrocitos , Proteínas de Peces/genética , Carpa Dorada , Infecciones por Bacterias Gramnegativas/veterinaria , Hemólisis , Triploidía
14.
Artículo en Inglés | MEDLINE | ID: mdl-34461291

RESUMEN

Ferritin H can participate in the regulation of fish immunity. Tissue-specific analysis revealed that the highest expressions of Ferritin H in parental species were observed in spleen, while peaked level of Ferritin H mRNA in hybrid fish was observed in liver. In addition, A. hydrophila challenge could sharply enhance their Ferritin H mRNA expression in liver, kidney and spleen. To further investigate their roles in immune regulation, their Ferritin H fusion proteins were produced in vitro. Ferritin H fusion proteins could exhibit a direct binding activity to A. hydrophila and endotoxin in a dose-dependent manner, restrict dissemination of A. hydrophila to tissues and abrogate inflammatory cascades. Moreover, treatment with Ferritin H fusion proteins could reduce A. hydrophila-induced lipid peroxidation. These results indicated that Ferritin H in hybrid fish elicited a similar immune regulation of A. hydrophila-induced inflammatory signals in comparison with those of its parents.


Asunto(s)
Apoferritinas/inmunología , Carpas/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/metabolismo , Aeromonas hydrophila/inmunología , Animales , Apoferritinas/genética , Apoferritinas/metabolismo , Carpas/microbiología , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/patología , Proteínas de Peces/genética , Infecciones por Bacterias Gramnegativas/microbiología , Inmunidad Innata , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Bazo/inmunología , Bazo/metabolismo , Bazo/patología
15.
Mar Environ Res ; 169: 105377, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34087762

RESUMEN

Microplastics (MPs) are a new type of environmental pollutant. To investigate the response of shrimp and their microflora to MPs, Litopenaeus vannamei (L. vannamei) was exposed to different concentrations of MPs (0, 50, 500, and 5000 µg/L, i.e., C, L, M and H groups) for 48 h. The survival rate, intake of MPs, immune-related gene expression and microbial response under MP exposure were detected. The results showed that the survival rate in the H group was significantly lower than those in the C, L and M groups, while the relative expression levels of proPO, TLR and ALF in the M and H groups were significantly higher than those in the C and L groups. For the microbial response, microbial community richness in the L group was significantly decreased, while community richness and diversity in the H group were significantly increased compared with those in the C group. The relative abundances of 3, 4 and 11 taxa were significantly changed after MP treatment at the phylum, class and genus levels, respectively. The results suggested that short-term exposure to low concentrations of MPs did not cause immune defense responses or death but affected the balance of bacterial composition in shrimp. Exposure to high concentrations of MPs can induce immune responses and microbial changes and can even cause death in shrimp. These findings increase our understanding of MP impacts on aquatic organisms.


Asunto(s)
Microbiota , Penaeidae , Animales , Bacterias , Inmunidad Innata , Microplásticos , Plásticos
16.
Fish Shellfish Immunol ; 116: 1-11, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34174452

RESUMEN

NK-lysin, an effector of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), not only exhibits cytotoxic effect in fish cells, but also participates in the immune defense against pathogenic infection. In this study, ORF sequences of RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin were 369 bp. Tissue-specific analysis revealed that the highest expressions of RCC-NK-lysin and WCC-NK-lysin were observed in gill, while the peaked level of WR-NK-lysin mRNA was observed in spleen. A. hydrophila infection sharply increased RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin mRNA expression in liver, trunk kidney and spleen. In addition, elevated levels of NK-lysin mRNA were observed in cultured fin cell lines of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) after Lipopolysaccharide (LPS) challenge. RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin exerted regulatory roles in inducing ROS generation, modulating mitochondrial membrane potential, decreasing fish cell viability and antagonizing survival signalings, respectively. RCC/WCC/WR-NK-lysin-overexpressing fish could up-regulate expressions of inflammatory cytokines and decrease bacterial loads in spleen. These results indicated that NK-lysin in hybrid fish contained close sequence similarity to those of its parents, possessing the capacities of cytotoxicity and immune defense against bacterial infection.


Asunto(s)
Aeromonas hydrophila , Carpas/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Proteolípidos/inmunología , Aletas de Animales/citología , Animales , Carpas/genética , Supervivencia Celular , Células Cultivadas , Quimera , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Expresión Génica , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Riñón/metabolismo , Lipopolisacáridos/farmacología , Hígado/metabolismo , Potencial de la Membrana Mitocondrial , Proteolípidos/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bazo/metabolismo , Bazo/microbiología
17.
Fish Physiol Biochem ; 47(4): 939-950, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33864177

RESUMEN

The fish abnormal embryonic development has attracted public attention in the recent few years. In this study, an iTRAQ proteomic analysis of mosquitofish between conjoined twins and normal fishes is applied for the first time by using the genome database of mosquitofish. Three thousand four hundred ninety proteins were identified with 304 differentially expressed proteins (DEPs). One hundred six differentially upregulated proteins (DUPs) and 198 differentially downregulated proteins (DDPs) were identified between the conjoined twins and normal mosquitofish groups. Notably, the proteins related to lipid and proteolysis were the important GO terms for the DUPs while response to light stimulus and response to radiation were the most enriched GO terms for the DDPs. The proteins related to lysosome, apoptosis, autophagy, and phagosome were the functional KEGG pathway for the DUPs while most of the pathways were related to cardiovascular for the DDPs. This study expatiated a pivotal protein profile between the conjoined twins and normal mosquitofish which can provide a conference for fish embryonic development.


Asunto(s)
Anomalías Congénitas/metabolismo , Ciprinodontiformes/anomalías , Ciprinodontiformes/metabolismo , Proteínas de Peces/metabolismo , Animales , Proteómica
18.
Chemosphere ; 263: 128270, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297214

RESUMEN

Crustaceans are particularly sensitive to heavy metal pollution. Copper (Cu) is one of typical heavy metal pollutants in aquatic ecosystems. However, limited attention has been paid on the proteomic responses of shrimp under Cu stress. White shrimp Litopenaeus vannamei held in 5‰ seawater were exposed to 5 mg L-1 Cu for 3 h, and the regulatory mechanism in the gills was elucidated using iTRAQ-based quantitative proteomics. The results showed that a total of 5034 proteins were identified, 385 differentially expressed proteins (DEPs), including 147 differentially up-regulated proteins (DUPs) and 238 differentially down-regulated proteins (DDPs) were found. Bioinformatics analysis indicated the DEPs responding to Cu stress mainly involved in cytoskeleton, immune response, stress response, protein synthesis, detoxification, ion homeostasis and apoptosis. Furthermore, we still performed PRM analysis on sarcoplasmic calcium binding protein (SCP), serine proteinase inhibitor B3 (SPIB3), C-type lectin 4 (CTL4), cathepsin L (CATHL), JHE-like carboxylesterase 1 (CXE1) and paramyosin (PMY), and biochemical analysis on Cu/Zn-superoxide dismutase (Cu/Zn-SOD) to validate the iTRAQ results, respectively. The present proteome analysis revealed that Cu stress disrupted the ion homeostasis and protein synthesis, and L.vannamei mainly regulates a series of molecular pathways which contained many key proteins involved in the immune process to protect the organism from Cu stress. Our data provides more insight about the underlying mechanisms that related to the stress response of Cu exposure in crustacean.


Asunto(s)
Branquias , Penaeidae , Animales , Cobre/toxicidad , Ecosistema , Penaeidae/genética , Proteómica
19.
Environ Res ; 198: 110466, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33189744

RESUMEN

The effects of microplastics (MPs) on aquaculture animals have raised increasing concern, but studies on MPs contamination in cultured shrimp are still limited. Therefore, the responses of three widely farmed shrimp species to MPs, including Penaeus monodon (P. monodon), Marsupenaeus japonicas (M. japonicus) and Litopenaeus vannamei (L. vannamei), were investigated in this study. The results showed that the mortality of P. monodon, M. japonicus and L. vannamei were 47%, 53% and 20% respectively after 48 h of 300 mg/L MPs exposure. After 48 h of 100 mg/L MPs exposure, for P. monodon, the MPs content in water and excreta were significantly different from that in M. japonicus and L. vannamei. For genes expressions, the expression of catalase (Cat) was significantly increased and the expression of apoptosis protein (IAP) was inhibited in these three shrimps, but only the expression of Lysozyme (Lys) was increased in L. vannamei after MPs exposure. After 48 h of depuration, the Cat and IAP expression of P. monodon and M. japonicus was significant decreased while the IAP and Lys expression of L. vannamei still maintained at a high level. The results suggested that the metabolic rate of MPs in P. monodon was significantly higher than that in M. japonicus and L. vannamei. The tolerance of L. vannamei to MPs was higher than that of P. monodon and M. japonicas and their different responses in anti-microbial gene might be one of the reasons for the difference of their mortality. This study provides the first report comparing the organism response distinction in cultured shrimp and enriching to the understanding of the impact of MPs on ecosystem.


Asunto(s)
Microplásticos , Penaeidae , Animales , Acuicultura , Ecosistema , Penaeidae/genética , Plásticos
20.
Fish Shellfish Immunol ; 106: 975-981, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32927054

RESUMEN

To investigate shrimp immunoregulation and tissue self-repair mechanism during temperature fluctuation stage, Litopenaeus vannamei (L. vannamei) was treated under conditions of gradual cooling from an acclimation temperature (28 °C, C group) to 13 °C (T group) in 2 days with a cooling rate of 7.5 °C/d and then rewarmed to 28 °C (R group) with the same rate. Tandem mass tags (TMT) -based proteomics technology was used to investigate the protein abundance changes of intestine in L. vannamei during temperature fluctuation. The results showed that a total of 5796 proteins with function annotation were identified. Of which, the abundances of 1978 proteins (34%) decreased after cooling and then increased after rewarming, 1498 proteins (26%) increased during the whole stage, 1263 proteins (22%) increased after cooling and then decreased after rewarming and 1057 proteins (18%) decreased during the whole stage. Differentially expressed proteins such as C-lectin, NFκBIA and Caspase may contributed to the regulation of immunity and tissue repair of shrimp intestine during the temperature fluctuation stage. These findings contribute to the better understanding of shrimp' regulatory mechanism against adverse environment.


Asunto(s)
Proteínas de Artrópodos/inmunología , Frío , Penaeidae/inmunología , Aclimatación , Animales , Acuicultura , Intestinos/inmunología , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA