Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797325

RESUMEN

ZFYVE21 is an ancient, endosome-associated protein that is highly expressed in endothelial cells (ECs) but whose function(s) in vivo are undefined. Here, we identified ZFYVE21 as an essential regulator of vascular barrier function in the aging kidney. ZFYVE21 levels significantly decline in ECs in aged human and mouse kidneys. To investigate attendant effects, we generated EC-specific ZFVYE21-/- reporter mice. These knockout mice developed accelerated aging phenotypes including reduced endothelial nitric oxide (ENOS) activity, failure to thrive, and kidney insufficiency. Kidneys from ZFYVE21 EC-/- mice showed interstitial edema and glomerular EC injury. ZFYVE21-mediated phenotypes were not programmed developmentally as loss of ZFYVE21 in ECs during adulthood phenocopied its loss prenatally, and a nitric oxide donor normalized kidney function in adult hosts. Using live cell imaging and human kidney organ cultures, we found that in a GTPase Rab5- and protein kinase Akt-dependent manner, ZFYVE21 reduced vesicular levels of inhibitory caveolin-1 and promoted transfer of Golgi-derived ENOS to a perinuclear Rab5+ vesicular population to functionally sustain ENOS activity. Thus, our work defines a ZFYVE21- mediated trafficking mechanism sustaining ENOS activity and demonstrates the relevance of this pathway for maintaining kidney function with aging.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325588

RESUMEN

Melatonin is involved in exerting protective effects in aged-related and neurodegenerative diseases through a silent information regulator type 1 (SIRT1)-dependent pathway. However, little was known about the impact of melatonin on retinal ganglion cell (RGC) senescence and apoptosis following optic nerve crush (ONC). Thus, this study aimed to examine the effects of melatonin on RGC senescence and apoptosis after ONC and investigate the involvement of SIRT1 in this process. To study this, an ONC model was established. EX-527, an inhibitor of SIRT1, was injected intraperitoneally into mice. And melatonin was administrated abdominally into mice after ONC every day. Hematoxylin & eosin staining, retina flat-mounts and optical coherence tomography were used to evaluate the loss of retina cells/neurons. Pattern electroretinogram (p-ERG) was performed to evaluate the function of RGCs. Immunofluorescence and western blot were used to evaluate protein expression. SA-ß-gal staining was employed to detect senescent cells. The results demonstrated that melatonin partially rescued the expression of SIRT1 in RGC 3 days after ONC. Additionally, melatonin administration partly rescued the decreased RGC number and ganglion cell complex thickness observed 14 days after ONC. Melatonin also suppressed ONC-induced senescence and apoptosis index. Furthermore, p-ERG showed that melatonin improved the amplitude of P50, N95 and N95/P50 following ONC. Importantly, the protective effects of melatonin were reversed when EX-527 was administered. In summary, this study revealed that melatonin attenuated RGC senescence and apoptosis through a SIRT1-dependent pathway after ONC. These findings provide valuable insights for the treatment of RGC senescence and apoptosis.


Asunto(s)
Melatonina , Traumatismos del Nervio Óptico , Animales , Ratones , Apoptosis , Melatonina/farmacología , Melatonina/uso terapéutico , Traumatismos del Nervio Óptico/tratamiento farmacológico , Células Ganglionares de la Retina/metabolismo , Sirtuina 1/metabolismo
3.
Transl Vis Sci Technol ; 13(1): 1, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165719

RESUMEN

Purpose: The present study aimed to evaluate the effect of acrizanib, a small molecule inhibitor targeting vascular endothelial growth factor receptor 2 (VEGFR2), on physiological angiogenesis and pathological neovascularization in the eye and to explore the underlying molecular mechanisms. Methods: We investigated the potential role of acrizanib in physiological angiogenesis using C57BL/6J newborn mice, and pathological angiogenesis using the mouse oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) models. Moreover, vascular endothelial growth factor (VEGF)-treated human umbilical vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying acrizanib's antiangiogenic effects. Results: The intravitreal injection of acrizanib did not show a considerable impact on physiological angiogenesis and retinal thickness, indicating a potentially favorable safety profile. In the mouse models of OIR and CNV, acrizanib showed promising results in reducing pathological neovascularization, inflammation, and vascular leakage, indicating its potential efficacy against pathological angiogenesis. Consistent with in vivo results, acrizanib blunted angiogenic events in VEGF-treated HUVECs such as proliferation, migration, and tube formation. Furthermore, acrizanib inhibited the multisite phosphorylation of VEGFR2 to varying degrees and the activation of its downstream signal pathways in VEGF-treated HUVECs. Conclusions: This study suggested the potential efficacy and safety of acrizanib in suppressing fundus neovascularization. Acrizanib functioned through inhibiting multiple phosphorylation sites of VEGFR2 in endothelial cells to different degrees. Translational Relevance: These results indicated that acrizanib might hold promise as a potential candidate for the treatment of ocular vascular diseases.


Asunto(s)
Neovascularización Coroidal , Enfermedades de la Retina , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Humanos , Ratones , Proliferación Celular , Células Cultivadas , Neovascularización Coroidal/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Fosforilación , Enfermedades de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
J Pineal Res ; 76(1): e12916, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37786968

RESUMEN

Normal tension glaucoma (NTG) is referred to as a progressive degenerative disorder of the retinal ganglion cells (RGCs), resulting in nonreversible visual defects, despite intraocular pressure levels within the statistically normal range. Current therapeutic strategies for NTG yield limited benefits. Excitatory amino acid carrier 1 (EAAC1) knockout (EAAC1-/- ) in mice has been shown to induce RGC degeneration without elevating intraocular pressure, mimicking pathological characteristics of NTG. In this study, we explored whether daily oral administration of melatonin could block RGCs loss and prevent retinal morphology and function defects associated with EAAC1 deletion. We also explored the molecular mechanisms underlying EAAC1 deletion-induced RGC degeneration and the neuroprotective effects of melatonin. Our RNA sequencing and in vivo data indicated EAAC1 deletion caused elevated oxidative stress, activation of apoptosis and cellular senescence pathways, and neuroinflammation in RGCs. However, melatonin administration efficiently prevented these detrimental effects. Furthermore, we investigated the potential role of apoptosis- and senescence-related redox-sensitive factors in EAAC1 deletion-induced RGCs degeneration and the neuroprotective effects of melatonin administration. We observed remarkable upregulation of p53, whereas NRF2 and Sirt1 expression were significantly decreased in EAAC1-/- mice, which were prevented by melatonin treatment, suggesting that melatonin exerted its neuroprotective effects possibly through modulating NRF2/p53/Sirt1 redox-sensitive signaling pathways. Overall, our study provided a solid foundation for the application of melatonin in the management of NTG.


Asunto(s)
Melatonina , Fármacos Neuroprotectores , Animales , Ratones , Células Ganglionares de la Retina/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Sirtuina 1/metabolismo , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Modelos Animales de Enfermedad
6.
Front Immunol ; 14: 1248027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915586

RESUMEN

Introduction: Ischemia reperfusion injury (IRI) confers worsened outcomes and is an increasing clinical problem in solid organ transplantation. Previously, we identified a "PtchHi" T-cell subset that selectively received costimulatory signals from endothelial cell-derived Hedgehog (Hh) morphogens to mediate IRI-induced vascular inflammation. Methods: Here, we used multi-omics approaches and developed a humanized mouse model to resolve functional and migratory heterogeneity within the PtchHi population. Results: Hh-mediated costimulation induced oligoclonal and polyclonal expansion of clones within the PtchHi population, and we visualized three distinct subsets within inflamed, IRI-treated human skin xenografts exhibiting polyfunctional cytokine responses. One of these PtchHi subsets displayed features resembling recently described T peripheral helper cells, including elaboration of IFN-y and IL-21, expression of ICOS and PD-1, and upregulation of positioning molecules conferring recruitment and retention within peripheral but not lymphoid tissues. PtchHi T cells selectively homed to IRI-treated human skin xenografts to cause accelerated allograft loss, and Hh signaling was sufficient for this process to occur. Discussion: Our studies define functional heterogeneity among a PtchHi T-cell population implicated in IRI.


Asunto(s)
Trasplante de Órganos , Daño por Reperfusión , Ratones , Animales , Humanos , Citocinas , Proteínas Hedgehog , Daño por Reperfusión/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo
7.
Invest Ophthalmol Vis Sci ; 64(14): 42, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015174

RESUMEN

Purpose: This study aimed to explore the impact of GSK840 on retinal neuronal injury after retinal ischemia/reperfusion (IR) and its associated mechanism. Methods: We established an in vivo mouse model of IR and an in vitro model of oxygen and glucose deprivation/reoxygenation (OGDR) in primary mouse retinal ganglion cells (RGCs). GSK840, a small-molecule compound, was used to specifically inhibit RIPK3/MLKL-dependent necroptosis. Retinal structure and function evaluation was performed by using hematoxylin and eosin staining, optical coherence tomography, and electroretinography. Propidium Iodide (PI) staining was used for detection of necroptotic cell death, whereas Western blot analysis and immunofluorescence were used to assess necroptosis-related proteins and inner retinal neurons. Results: RIPK3/MLKL-dependent necroptosis was rapidly activated in RGCs following retinal IR or OGDR. GSK840 helped maintain relatively normal inner retinal structure and thickness by preserving inner retinal neurons, particularly RGCs. Meanwhile, GSK840 ameliorated IR-induced visual dysfunction, as evidenced by the improved amplitudes of photopic negative response, a-wave, b-wave, and oscillatory potentials. And GSK840 treatment significantly reduced the population of PI+ RGCs after injury. Mechanistically, GSK840 ameliorated RGC necroptosis by inhibiting the RIPK3/MLKL pathway. Conclusions: GSK840 exerts protective effects against retinal neuronal injury after IR by inhibiting RIPK3/MLKL-mediated RGC necroptosis. GSK840 may represent a protective strategy for RGC degeneration in ischemic retinopathy.


Asunto(s)
Lesiones Oculares , Enfermedades de la Retina , Animales , Ratones , Necroptosis , Enfermedades de la Retina/etiología , Enfermedades de la Retina/prevención & control , Células Ganglionares de la Retina , Glucosa , Isquemia , Oxígeno , Proteínas Quinasas
8.
Transl Vis Sci Technol ; 12(9): 17, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37738055

RESUMEN

Purpose: To evaluate differences in the choroidal vortex vein drainage system (VV) in eyes between patients with central serous chorioretinopathy (CSC) and unaffected individuals using ultra-widefield optical coherence tomography angiography (UWF-OCTA). Methods: In this cross-sectional observational study, 40 eyes of patients with CSC and 28 eyes of healthy volunteers were included. The analysis involved the use of UWF-OCTA to analyze the proportion of the choroidal vortex vein drainage system (VV%), choroidal thickness, choroidal vascular volume (CVV), and choroidal vascularity index (CVI) of the VV in each drainage quadrant. The location relationship between the leakage points in fluorescein angiography and the VV was also explored. Results: A within-group analysis of VV% showed a statistically significant difference in the CSC group (P < 0.001) but not in the control group (P = 0.270). Compared to healthy eyes, CSC eyes had a significantly larger CVV and higher CVI in all regions (all P < 0.05). The superotemporal (ST) drainage system had the largest CVV and thickest choroidal layer among the four drainage quadrants (all P < 0.05) in CSC eyes. The leakage rate in the ST quadrant was significantly higher than that in the inferotemporal quadrant (P < 0.001). Conclusions: CSC eyes have an asymmetric vortex vein drainage system, with relative hyperperfusion in all VV. Further, the preferential drainage route of the submacular choroid may be the ST drainage system in CSC eyes. Translational Relevance: Targeting the imbalanced drainage system could be a potential therapeutic approach for CSC.


Asunto(s)
Coriorretinopatía Serosa Central , Humanos , Coriorretinopatía Serosa Central/diagnóstico por imagen , Coriorretinopatía Serosa Central/cirugía , Tomografía de Coherencia Óptica , Estudios Transversales , Angiografía con Fluoresceína , Coroides/diagnóstico por imagen
9.
Invest Ophthalmol Vis Sci ; 64(11): 19, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578424

RESUMEN

Purpose: This study aimed to investigate the age-dependent anti-angiogenic capability of melatonin in choroidal neovascularization (CNV) and to explore the underlying molecular mechanisms. Methods: In the present study, a laser-induced CNV model was established in both young (three months of age) and old (18 months of age) mice, and the size of CNV lesions and vascular leakage was detected by morphological and imaging examination. Next, Western blot and immunostaining were used to observe the levels of M2 markers, senescence-related markers, and molecules involved in IL-10/STAT3 pathway. Additionally, colivelin was used to study the effect of IL-10/STAT3 pathway activation on the expression of M2 markers and senescence-related markers by Western blot and immunostaining. Finally, the effects of colivelin on melatonin-induced reduction of CNV size and vascular leakage in mice at different ages were assessed using morphological and imaging examination. Results: Our results revealed that aging promoted M2 macrophage/microglia polarization, and aggravated CNV and vascular leakage. Melatonin significantly inhibited the M2 polarization of senescent macrophage/microglia and reduced the CNV area and vascular leakage. Moreover, melatonin markedly suppressed IL-10/STAT3 pathway activation in the macrophage/microglia of old mice, and STAT3 activator colivelin reversed the suppressive effect of melatonin on M2 polarization of senescent macrophage/microglia and laser-induced CNV in old mice. Conclusions: Our data demonstrated that melatonin significantly prevented the M2 polarization of senescent macrophage/microglia by inhibiting the IL-10/STAT3 pathway, and eventually attenuated senescence-associated CNV. These findings suggested that melatonin could serve as a promising therapeutic agent to treat CNV and other age-related ocular diseases.


Asunto(s)
Neovascularización Coroidal , Melatonina , Ratones , Animales , Microglía/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Interleucina-10/metabolismo , Interleucina-10/farmacología , Interleucina-10/uso terapéutico , Neovascularización Coroidal/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
11.
Nat Commun ; 14(1): 3002, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225719

RESUMEN

Internalization of complement membrane attack complexes (MACs) assembles NLRP3 inflammasomes in endothelial cells (EC) and promotes IL-ß-mediated tissue inflammation. Informed by proteomics analyses of FACS-sorted inflammasomes, we identify a protein complex modulating inflammasome activity on endosomes. ZFVYE21, a Rab5 effector, partners with Rubicon and RNF34, forming a "ZRR" complex that is stabilized in a Rab5- and ZFYVE21-dependent manner on early endosomes. There, Rubicon competitively disrupts inhibitory associations between caspase-1 and its pseudosubstrate, Flightless I (FliI), while RNF34 ubiquitinylates and degradatively removes FliI from the signaling endosome. The concerted actions of the ZRR complex increase pools of endosome-associated caspase-1 available for activation. The ZRR complex is assembled in human tissues, its associated signaling responses occur in three mouse models in vivo, and the ZRR complex promotes inflammation in a skin model of chronic rejection. The ZRR signaling complex reflects a potential therapeutic target for attenuating inflammasome-mediated tissue injury.


Asunto(s)
Células Endoteliales , Inflamasomas , Humanos , Animales , Ratones , Endosomas , Anticuerpos , Caspasa 1 , Inflamación , Proteínas Portadoras/genética , Proteínas de Microfilamentos , Transactivadores
12.
Invest Ophthalmol Vis Sci ; 64(4): 31, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37099021

RESUMEN

Purpose: Strategies for neuroprotection are the main targets of glaucoma research. The neuroprotective properties of SRT2104 administration have been proven in central nervous system degeneration diseases through the activation of nicotinamide adenine dinucleotide-dependent deacetylase-silence information regulator 1 (Sirt1). Here, we investigated whether SRT2104 could protect the retina from ischemia/reperfusion (I/R) injury and the underlying mechanisms. Methods: SRT2104 was intravitreally injected immediately after I/R induction. RNA and protein expression were detected by quantitative real-time PCR and Western blot. Protein expression and distribution were examined by immunofluorescence staining. Retinal structure and function were analyzed by hematoxylin and eosin staining, optical coherence tomography, and electroretinogram. Optic nerve axons were quantified using toluidine blue staining. Cellular apoptosis and senescence were evaluated by TUNEL assay and SA-ß-gal staining. Results: The protein expression of Sirt1 decreased dramatically after I/R injury and SRT2104 administration effectively enhanced the stability of Sirt1 protein without significantly influencing Sirt1 mRNA synthesis. SRT2104 administration alone exerted no influence on the structure and function of normal retinas. However, SRT2104 intervention significantly protected the inner retinal structure and neurons; partially restored retinal function after I/R injury. I/R-induced cellular apoptosis and senescence were effectively alleviated by SRT2104 administration. Additionally, SRT2104 intervention markedly reduced neuroinflammation, including reactive gliosis, retinal vascular inflammation, and the overexpression of pro-inflammatory cytokines after I/R injury. Mechanistically, I/R-induced acetylation of p53, NF-κB p65, and STAT3 was significantly reversed by SRT2104 intervention. Conclusions: We demonstrated that SRT2104 exerted potent protective effects against I/R injury by enhancing Sirt1-mediated deacetylation and suppressing apoptosis, senescence, and neuroinflammation-related pathways.


Asunto(s)
Neuroprotección , Daño por Reperfusión , Ratones , Animales , Sirtuina 1/metabolismo , Enfermedades Neuroinflamatorias , Daño por Reperfusión/prevención & control , Apoptosis , Inflamación , Isquemia
13.
Sci Signal ; 16(777): eabo3406, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943921

RESUMEN

The zinc finger protein ZFYVE21 is involved in immune signaling. Using humanized mouse models, primary human cells, and patient samples, we identified a T cell-autonomous role for ZFYVE21 in promoting chronic vascular inflammation associated with allograft vasculopathy. Ischemia-reperfusion injury (IRI) stimulated endothelial cells to produce Hedgehog (Hh) ligands, which in turn induced the production of ZFYVE21 in a population of T memory cells with high amounts of the Hh receptor PTCH1 (PTCHhi cells, CD3+CD4+CD45RO+PTCH1hiPD-1hi), vigorous recruitment to injured endothelia, and increased effector responses in vivo. After priming by interferon-γ (IFN-γ), Hh-induced ZFYVE21 activated NLRP3 inflammasome activity in T cells, which potentiated IFN-γ responses. Hh-induced NLRP3 inflammasomes and T cell-specific ZFYVE21 augmented the vascular sequelae of chronic inflammation in mice engrafted with human endothelial cells or coronary arteries that had been subjected to IRI before engraftment. Moreover, the population of PTCHhi T cells producing high amounts of ZFYVE21 was expanded in patients with renal transplant-associated IRI, and sera from these patients expanded this population in control T cells in a manner that depended on Hh signaling. We conclude that Hh-induced ZFYVE21 activates NLRP3 inflammasomes in T cells, thereby promoting chronic inflammation.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Linfocitos T/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
14.
Front Immunol ; 13: 1020889, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211400

RESUMEN

Endothelial cells (ECs) form a critical immune interface regulating both the activation and trafficking of alloreactive T cells. In the setting of solid organ transplantation, donor-derived ECs represent sites where alloreactive T cells encounter major and minor tissue-derived alloantigens. During this initial encounter, ECs may formatively modulate effector responses of these T cells through expression of inflammatory mediators. Direct allorecognition is a process whereby recipient T cells recognize alloantigen in the context of donor EC-derived HLA molecules. Direct alloresponses are strongly modulated by human ECs and are galvanized by EC-derived inflammatory mediators. Complement are immune proteins that mark damaged or foreign surfaces for immune cell activation. Following labeling by natural IgM during ischemia reperfusion injury (IRI) or IgG during antibody-mediated rejection (ABMR), the complement cascade is terminally activated in the vicinity of donor-derived ECs to locally generate the solid-phase inflammatory mediator, the membrane attack complex (MAC). Via upregulation of leukocyte adhesion molecules, costimulatory molecules, and cytokine trans-presentation, MAC strengthen EC:T cell direct alloresponses and qualitatively shape the alloimmune T cell response. These processes together promote T cell-mediated inflammation during solid organ transplant rejection. In this review we describe molecular pathways downstream of IgM- and IgG-mediated MAC assembly on ECs in the setting of IRI and ABMR of tissue allografts, respectively. We describe work demonstrating that MAC deposition on ECs generates 'signaling endosomes' that sequester and post-translationally enhance the stability of inflammatory signaling molecules to promote EC activation, a process potentiating EC-mediated direct allorecognition. Additionally, with consideration to first-in-human xenotransplantation procedures, we describe clinical therapeutics based on inhibition of the complement pathway. The complement cascade critically mediates EC activation and improved understanding of relevant effector pathways will uncover druggable targets to obviate dysregulated alloimmune T cell infiltration into tissue allografts.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento , Rechazo de Injerto , Moléculas de Adhesión Celular , Citocinas , Células Endoteliales , Humanos , Inmunoglobulina G , Inmunoglobulina M , Mediadores de Inflamación , Isoantígenos
15.
J Pineal Res ; 73(4): e12828, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36031799

RESUMEN

Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1ß-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.


Asunto(s)
Glaucoma , Melatonina , Fármacos Neuroprotectores , Hipertensión Ocular , Animales , Ratones , Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , ADN Nucleotidilexotransferasa/metabolismo , Interleucina-1beta/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
16.
Rep U S ; 20202020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34457374

RESUMEN

This paper proposes a magnetic needle steering controller to manipulate mesoscale magnetic suture needles for executing planned suturing motion. This is an initial step towards our research objective: enabling autonomous control of magnetic suture needles for suturing tasks in minimally invasive surgery. To demonstrate the feasibility of accurate motion control, we employ a cardinally-arranged four-coil electromagnetic system setup and control magnetic suture needles in a 2-dimensional environment, i.e., a Petri dish filled with viscous liquid. Different from only using magnetic field gradients to control small magnetic agents under high damping conditions, the dynamics of a magnetic suture needle are investigated and encoded in the controller. Based on mathematical formulations of magnetic force and torque applied on the needle, we develop a kinematically constrained dynamic model that controls the needle to rotate and only translate along its central axis for mimicking the behavior of surgical sutures. A current controller of the electromagnetic system combining with closed-loop control schemes is designed for commanding the magnetic suture needles to achieve desired linear and angular velocities. To evaluate control performance of magnetic suture needles, we conduct experiments including needle rotation control, needle position control by using discretized trajectories, and velocity control by using a time-varying circular trajectory. The experiment results demonstrate our proposed needle steering controller can perform accurate motion control of mesoscale magnetic suture needles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA