Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502261

RESUMEN

Iron, an essential trace element, is involved in various physiological processes; however, consumption of excessive iron possesses detrimental effects. In practical feed production, the iron content added to feeds often far exceeds the actual demand, resulting in an excess of iron in the body. The liver as a central regulator of iron homeostasis is susceptible to damage caused by disorders in iron metabolism. A model of hepatic iron overload in laying hens was developed in this study by incorporating iron into their diet, and the specific mechanisms underlying iron overload-induced hepatic injury were investigated. Firstly, this study revealed that a high-iron diet resulted in hepatic iron overload, accompanied by impaired liver function. Next, assessment of oxidative stress markers indicated a decrease in activities of T-SOD and CAT, coupled with an increase in MDA content, pointing to the iron-overloaded liver oxidative stress. Thirdly, the impact of iron overload on hepatic glycolipid and bile acid metabolism-related gene expressions were explored, including PPAR-α, GLUT2, and CYP7A1, highlighting disruptions in hepatic metabolism. Subsequently, analyses of inflammation-related genes such as iNOS and IL-1ß at both protein and mRNA levels demonstrated the presence of inflammation in the liver under conditions of dietary iron overload. Overall, this study provided comprehensive evidence that dietary iron overload contributed to disorders in glycolipid and bile acid metabolism, accompanied by inflammatory responses in laying hens. Further detailing the specific pathways involved and the implications of these findings could offer valuable insights for future research and practical applications in poultry nutrition.

2.
Toxicology ; 503: 153742, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325558

RESUMEN

Mercuric chloride (HgCl2), a widespread environmental pollutant, induces ferroptosis in chicken embryonic kidney (CEK) cells. Whereas activating transcription factor 4 (ATF4), a critical mediator of oxidative homeostasis, plays a dual role in ferroptosis, but its precise mechanisms in HgCl2-induced ferroptosis remain elusive. This study aims to investigate the function and molecular mechanism of ATF4 in HgCl2-induced ferroptosis. Our results revealed that ATF4 was downregulated during HgCl2-induced ferroptosis in CEK cells. Surprisingly, HgCl2 exposure has no significant impact on ATF4 mRNA level. Further investigation indicated that HgCl2 enhanced the expression of the E3 ligase beta-transducin repeat-containing protein (ß-TrCP) and increased ATF4 ubiquitination. Subsequent findings identified that miR-15b-5p as an upstream modulator of ß-TrCP, with miR-15b-5p downregulation observed in HgCl2-exposed CEK cells. Importantly, miR-15b-5p mimics suppressed ß-TrCP expression and reversed HgCl2-induced cellular ferroptosis. Mechanistically, HgCl2 inhibited miR-15b-5p, and promoted ß-TrCP-mediated ubiquitin degradation of ATF4, thereby inhibited the expression of antioxidant-related target genes and promoted ferroptosis. In conclusion, our study highlighted the crucial role of the miR-15b-5p/ß-TrCP/ATF4 axis in HgCl2-induced nephrotoxicity, offering a new therapeutic target for understanding the mechanism of HgCl2 nephrotoxicity.


Asunto(s)
Ferroptosis , MicroARNs , Embrión de Pollo , Animales , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Pollos/metabolismo , Ubiquitina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Riñón/metabolismo
3.
Poult Sci ; 102(11): 103053, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716231

RESUMEN

Skeletal muscle satellite cells (SMSCs), known as muscle stem cells, play an important role in muscle embryonic development, post-birth growth, and regeneration after injury. Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident selenoprotein, is known to regulate calcium ion (Ca2+) flux and ER stress (ERS). SELENOK deficiency is involved in dietary selenium deficiency-induced muscle injury, but the regulatory mechanisms of SELENOK in SMSCs development remain poorly explored in chicken. Here, we established a SELENOK deficient model to explore the role of SELENOK in SMSCs. SELENOK knockdown inhibited SMSCs proliferation and differentiation by regulating the protein levels of paired box 7 (Pax7), myogenic factor 5 (Myf5), CyclinD1, myogenic differentiation (MyoD), and Myf6. Further analysis exhibited that SELENOK knockdown markedly activated the ERS signaling pathways, which ultimately induced apoptosis in SMSCs. SELENOK knockdown-induced ERS is related with ER Ca2+ ([Ca2+]ER) overload via decreasing the protein levels of STIM2, Orai1, palmitoylation of inositol 1,4,5-trisphosphate receptor 1 (IP3R1), phospholamban (PLN), and plasma membrane Ca2+-ATPase (PMCA) while increasing the protein levels of sarco/endoplasmic Ca2+-ATPase 1 (SERCA1) and Na+/Ca2+ exchanger 1 (NCX1). Moreover, thimerosal, an activator of IP3R1, reversed the overload of [Ca2+]ER, ERS, and subsequent apoptosis caused by SELENOK knockdown. These findings indicated that SELENOK knockdown triggered ERS driven by intracellular Ca2+ dyshomeostasis and further induced apoptosis, which ultimately inhibited SMSCs proliferation and differentiation.


Asunto(s)
Calcio , Células Satélite del Músculo Esquelético , Animales , Calcio/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Pollos/metabolismo , Estrés del Retículo Endoplásmico , Calcio de la Dieta , Apoptosis , Adenosina Trifosfatasas , Selenoproteínas/genética , Selenoproteínas/metabolismo
4.
J Adv Res ; 46: 87-100, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37003700

RESUMEN

INTRODUCTION: Lead (Pb) is an environmental toxicant that poses severe health risks to humans and animals, especially renal disorders. Pb-induced nephrotoxicity has been attributed to oxidative stress, in which apoptosis and autophagy are core events. OBJECTIVES: Nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a major contributor to counteract oxidative damage, while hyperactivation or depletion of Nrf2 pathway can cause the redox imbalance to induce tissue injury. This study was performed to clarify the function and mechanism of Nrf2 in Pb-triggered kidney injury. METHODS AND RESULTS: First, data showed that Pb exposure activates Nrf2 pathway in primary rat proximal tubular cells. Next, Pb-induced Nrf2 activation was effectively regulated by pharmacological modulation or siRNA-mediated knockdown in vitro and in vivo assays. Notably, Pb-triggered cytotoxicity, renal injury and concomitant apoptosis were improved by Nrf2 downregulation, confirming that Pb-induced persistent Nrf2 activation contributes to nephrotoxicity. Additionally, Pb-triggered autophagy blockage was relieved by Nrf2 downregulation. Mechanistically, we found that Pb-induced persistent Nrf2 activation is attributed to reduced Nrf2 ubiquitination and nuclear-cytoplasmic loss of Keap1 in a p62-dependent manner. CONCLUSIONS: In conclusion, these findings highlight the dark side of persistent Nrf2 activation and potential crosstalk among Pb-induced persistent Nrf2 activation, apoptosis and autophagy blockage in Pb-triggered nephrotoxicity.


Asunto(s)
Plomo , Factor 2 Relacionado con NF-E2 , Humanos , Ratas , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Plomo/toxicidad , Plomo/metabolismo , Apoptosis , Riñón , Autofagia
5.
Environ Sci Pollut Res Int ; 30(18): 51531-51541, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36810819

RESUMEN

Mercury is a highly toxic heavy metal with definite cardiotoxic properties and can affect the health of humans and animals through diet. Selenium (Se) is a heart-healthy trace element and dietary Se has the potential to attenuate heavy metal-induced myocardial damage in humans and animals. This study was designed to explore antagonistic effect of Se on the cardiotoxicity of mercuric chloride (HgCl2) in chickens. Hyline brown hens received a normal diet, a diet containing 250 mg/L HgCl2, or a diet containing 250 mg/L HgCl2 and 10 mg/kg Na2SeO3 for 7 weeks, respectively. Histopathological observations demonstrated that Se attenuated HgCl2-induced myocardial injury, which was further confirmed by the results of serum creatine kinase and lactate dehydrogenase levels assay and myocardial tissues oxidative stress indexes assessment. The results showed that Se prevented HgCl2-induced cytoplasmic calcium ion (Ca2+) overload and endoplasmic reticulum (ER) Ca2+ depletion mediated by Ca2+-regulatory dysfunction of ER. Importantly, ER Ca2+ depletion led to unfolded protein response and endoplasmic reticulum stress (ERS), resulting in apoptosis of cardiomyocytes via PERK/ATF4/CHOP pathway. In addition, heat shock protein expression was activated by HgCl2 through these stress responses, which was reversed by Se. Moreover, Se supplementation partially eliminated the effects of HgCl2 on the expression of several ER-settled selenoproteins, including selenoprotein K (SELENOK), SELENOM, SELENON, and SELENOS. In conclusion, these results suggested that Se alleviated ER Ca2+ depletion and oxidative stress-induced ERS-dependent apoptosis in chicken myocardium after HgCl2 exposure.


Asunto(s)
Selenio , Humanos , Animales , Femenino , Selenio/farmacología , Selenio/metabolismo , Pollos , Calcio/metabolismo , Cloruro de Mercurio/toxicidad , Cloruro de Mercurio/metabolismo , Apoptosis , Miocardio , Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Cardiotoxicidad/metabolismo
6.
Free Radic Biol Med ; 188: 35-44, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35675856

RESUMEN

Mercuric chloride (HgCl2) is an environmental pollutant with serious nephrotoxic effects, but the underlying mechanism of HgCl2 nephrotoxicity is not well understood. Ferroptosis and necroptosis are two programmed cell death (PCD) modalities that have been reported singly in heavy metal-induced kidney injury. However, the interaction between ferroptosis and necroptosis in HgCl2-induced kidney injury is unclear. Here, we established a model of HgCl2-exposed chicken embryo kidney (CEK) cells to dissect the progresses and mechanisms of these two PCDs. We found that ferroptosis was initially activated in CEK cells after HgCl2 exposure for 12 h, and necroptosis was activated subsequently at 24 h. Importantly, further study indicated that the shift from ferroptosis to necroptosis was driven by ROS, which was produced by iron-dependent Fenton reaction, and the iron chelation by DFO prevented the sequential activation of both ferroptosis and necroptosis. To investigate the source of intracellular iron, the regulation of iron homeostasis was first explored and demonstrated a tendency for intracellular iron overload in CEK cells. Interestingly, the cellular ferritin, a free iron depository, decreased in a time-dependent manner. Further studies revealed that the degradation of ferritin was attributed to the activation of selective cargo receptor nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy, and the inhibition of ferritinophagy by CQ prevented the HgCl2-induced cell death. In conclusion, our study demonstrated that HgCl2 released excess free iron via ferritinophagy, led to a sustained accumulation of ROS and ultimately activated ferroptosis and necroptosis sequentially. These findings provide a new understanding for the nephrotoxic mechanism of HgCl2.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Animales , Autofagia , Embrión de Pollo , Pollos/metabolismo , Ferritinas/metabolismo , Hierro/metabolismo , Riñón/metabolismo , Cloruro de Mercurio/metabolismo , Cloruro de Mercurio/toxicidad , Necroptosis , Especies Reactivas de Oxígeno/metabolismo
7.
Theriogenology ; 187: 188-194, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35605398

RESUMEN

Mercuric chloride (HgCl2) is a well-known toxic heavy metal contaminant, which causes male reproductive function defects. Selenium (Se) has been recognized as an effective antioxidant against heavy metals-induced male reproductive toxicity. The aim of present study was to explore the potentially protective mechanism of Se on HgCl2-induced testis injury in chicken. Firstly, the results showed that Se mitigated HgCl2-induced testicular injury through increasing the blood-testis barrier (BTB) cell-junction proteins expression of occludin, zonula occludens-1 (ZO-1), connexin 43 (Cx43), and N-cadherin. Secondly, Se alleviated HgCl2-induced oxidative stress through decreasing the malondialdehyde (MDA) content and increasing the superoxidase dismutase (SOD), glutathione peroxidase (GSH-Px) activities as well as the total antioxidant capacity (T-AOC) level. Thirdly, Se inhibited the activation of p38 MAPK signaling through decreasing the proteins expression of phosphorylated-p38 (p-p38) and phosphorylated-ATF2 (p-ATF2), and alleviated inflammation response through decreasing the proteins expression of inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NF-κB), tissue necrosis factor-alpha (TNF-α), and cyclooxygenase 2 (COX2). Collectively, these results demonstrated that Se effectively alleviated HgCl2-induced testes injury via improving antioxidant capacity to reduce inflammation mediated by p38 MAPK/ATF2/iNOS signaling pathway in chicken. Our data shed a new light on potential mechanisms of Se antagonized HgCl2-induced male reproductive toxicity.


Asunto(s)
Cloruro de Mercurio , Selenio , Animales , Antioxidantes/farmacología , Pollos/fisiología , Inflamación/metabolismo , Inflamación/veterinaria , Masculino , Cloruro de Mercurio/metabolismo , Cloruro de Mercurio/toxicidad , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo , Selenio/farmacología , Transducción de Señal , Testículo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
J Inorg Biochem ; 229: 111716, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35065321

RESUMEN

Mercuric chloride (HgCl2), a heavy metal compound, causes neurotoxicity of animals and humans. Selenium (Se) antagonizes heavy metal-induced organ damage with the properties of anti-oxidation and anti-inflammation. Nevertheless, the molecular mechanism underlying the protective effects of sodium selenite (Na2SeO3) against HgCl2-induced neurotoxicity remains obscure. Therefore, the present study aimed to explore the protective mechanism of Na2SeO3 on HgCl2-induced brain damage in chickens. Morphological observations showed that Na2SeO3 alleviated HgCl2-induced brain tissues damage. The results also showed that Na2SeO3 decreased the protein expression of S100 calcium binding protein B (S100B), and increased the levels of nerve growth factors (NGF), doublecortin domain containing 2 (DCDC2), as well as neurotransmitter to reverse HgCl2-induced brain dysfunction. Further, Na2SeO3 attenuated HgCl2-induced oxidative stress by decreasing the level of malondialdehyde (MDA) and increasing the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC). Mechanistically, Na2SeO3 activated the brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase receptor type B (TrKB)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and suppressed the nuclear factor kappa B (NF-κB) signaling pathway to inhibit apoptosis and inflammation caused by HgCl2 exposure. In summary, Na2SeO3 ameliorated HgCl2-induced brain injury via inhibiting apoptosis and inflammation through activating BDNF/TrKB/PI3K/AKT and suppressing NF-κB pathways.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Cloruro de Mercurio/toxicidad , Intoxicación del Sistema Nervioso por Mercurio/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Selenito de Sodio/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Encefalopatías/inducido químicamente , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Pollos , Inflamación/tratamiento farmacológico , Masculino , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor trkB/metabolismo
9.
Environ Toxicol ; 37(5): 1047-1057, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34995020

RESUMEN

Mercury (Hg) is a persistent environmental and industrial pollutant that accumulated in the body and induces oxidative stress and inflammation damage. Selenium (Se) has been reported to antagonize immune organs damage caused by heavy metals. Here, we aimed to investigate the prevent effect of Se on mercuric chloride (HgCl2 )-induced thymus and bursa of Fabricius (BF) damage in chickens. The results showed that HgCl2 caused immunosuppression by reducing the relative weight, cortical area of the thymus and BF, and the number of peripheral blood lymphocytes. Meanwhile, HgCl2 induced oxidative stress and imbalance in cytokines expression in the thymus and BF. Further, we found that thioredoxin-interacting protein (TXNIP) and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediated HgCl2 -induced oxidative stress and inflammation. Mechanically, the targeting and inhibitory effect of microRNA (miR)-135b/183 on forkhead box O1 (FOXO1) were an upstream event for HgCl2 -activated TXNIP/NLRP3 inflammasome pathway. Most importantly, Se effectively attenuated the aforementioned damage in the thymus and BF caused by HgCl2 and inhibited the TXNIP/NLRP3 inflammasome pathway by reversing the expression of FOXO1 through inhibiting miR-135b/183. In conclusion, the miR-135b/183-FOXO1/TXNIP/NLRP3 inflammasome axis might be a novel mechanism for Se to antagonize HgCl2 -induced oxidative stress and inflammation in the central immune organs of chickens.


Asunto(s)
MicroARNs , Selenio , Animales , Pollos/metabolismo , Inflamasomas/metabolismo , Cloruro de Mercurio/toxicidad , MicroARNs/genética , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Selenio/farmacología
10.
Biol Trace Elem Res ; 200(6): 2857-2865, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34436752

RESUMEN

Mercury (Hg) is a heavy metal widely distributed in ecological environment, poisoning the immune system of humans and animals. Selenium (Se) is an essential microelement and selenoproteins involved in the procedure of Se antagonizing organ toxicity induced by heavy metals. The aim of this research was to investigate the changes of gene expression profile of selenoproteins induced by mercuric chloride (HgCl2) in chicken spleen lymphocytes. We established cytotoxicity model of chicken spleen lymphocytes by HgCl2 exposure, the messenger RNA (mRNA) expression levels of 25 selenoproteins in spleen lymphocytes were analyzed by real-time quantitative PCR (qPCR), and the gene expression pattern of selenoproteins was revealed by principal component analysis (PCA). The results showed that the mRNA expression levels of 13 selenoproteins (GPX3, GPX4, TXNRD2, TXNRD3, DIO2, SELENOS, SELENON, SELENOT, SELENOO, SELENOP, SELENOP2, MSRB1, and SEPHS2) were decreased in HgCl2 treatment group, and there was strong positive correlation between these selenoproteins and component 1 as well as component 2 of the PCA. At the same time, the protein expression levels of GPX4, TXNRD1, TXNRD2, SELENOM, SELENOS, and SELENON were detected by Western blotting, which were consistent with the changes of gene expression. The results showed that the expression levels of selenoproteins were aberrant in response to HgCl2 toxicity. The information presented in this study provided clues for further research on the interaction between HgCl2 and selenoproteins, and the possible mechanism of immune organ toxicity induced by HgCl2.


Asunto(s)
Cloruro de Mercurio , Selenio , Animales , Pollos/metabolismo , Linfocitos/metabolismo , Cloruro de Mercurio/toxicidad , ARN Mensajero/genética , Selenio/metabolismo , Selenio/farmacología , Selenoproteínas/genética , Selenoproteínas/metabolismo , Bazo/metabolismo , Transcriptoma
11.
J Hazard Mater ; 423(Pt A): 127110, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34523489

RESUMEN

Cadmium (Cd) is a known nephrotoxic heavy metal and proximal tubules are the major target of Cd-induced acute kidney injury (AKI). We previously demonstrated that lysosomal dysfunction and dysregulated autophagy contribute to Cd-induced AKI. Recent studies have revealed that bromodomain-containing protein 4 (BRD4) is a transcriptional repressor of autophagy and lysosomal function. Hence, in vivo and in vitro studies were performed to clarify the role of BRD4 in Cd-induced AKI. Firstly, Cd has no effect on BRD4 expression levels, but increases H4K16 acetylation. Resultantly, Cd promotes the recruitment of BRD4 to lysosomal gene promoter regions to make it as a transcriptional regulator. Pharmacological and genetic inhibition of BRD4 alleviates Cd-inhibited lysosomal gene transcript levels and lysosomal function, leading to the alleviation of Cd-induced autophagy inhibition. Moreover, inhibition of BRD4 relieves Cd-induced oxidative stress and concurrent cytotoxicity, which is counteracted by the inhibition of autophagy via Atg5 knockdown, indicating that alleviation of oxidative stress by BRD4 inhibition is ascribed to its restoration of autophagic flux. Collectively, these results demonstrate that BRD4 acts as a transcriptional repressor to mediate lysosomal dysfunction, autophagy blockade and oxidative stress during Cd exposure, which may be a potential therapeutic target for Cd-induced AKI.


Asunto(s)
Lesión Renal Aguda , Cadmio , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Autofagia , Cadmio/metabolismo , Cadmio/toxicidad , Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética , Humanos , Lisosomas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Ecotoxicol Environ Saf ; 228: 113018, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34837874

RESUMEN

Mercury (Hg) is a persistent heavy metal contaminant with definite hepatotoxicity. Selenium (Se) has been shown to alleviate liver damage induced by heavy metals. Therefore, the present study aimed to explore the mechanism of the antagonistic effect of Se on mercury chloride (HgCl2)-induced hepatotoxicity in chickens. Firstly, we confirmed that Se alleviated HgCl2-induced liver injury through histopathological observation and liver function analyzation. The results also showed that Se prevented HgCl2-induced liver lipid accumulation and dyslipidemia by regulating the gene expression related to lipid as well as glucose metabolism. Moreover, Se blocked the nuclear factor kappa B (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, which was the key to alleviate the inflammation caused by HgCl2. Mechanically, Se inhibited immoderate mitochondrial division, fusion, and biogenesis caused by HgCl2, and also improved mitochondrial respiration, which were essential for preventing energy metabolism disorder and inflammation. In conclusion, our results suggested that Se inhibited energy metabolism disorder and inflammation by regulating mitochondrial dynamics, thereby alleviating HgCl2-induced liver injury in chickens. These results are expected to provide potential intervention and therapeutic targets for diseases caused by inorganic mercury poisoning.

13.
Toxicology ; 464: 152999, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695510

RESUMEN

Nuclear factor erythroid 2-related factor 2 (Nrf2) serves as the master regulator of antioxidant signaling and inhibition or hyperactivation of Nrf2 pathway will result in the redox imbalance to induce tissue injury. Herein, we established cadmium (Cd)-exposed rat kidney injury model by intraperitoneal injection with CdCl2 (1.5 mg/kg body weight) and cytotoxicity model of NRK-52E cells by CdCl2 (5 µM) exposure to reveal the role of Nrf2 hyperactivation in Cd-induced nephrotoxicity. Data from the in vitro and in vivo study showed that Cd caused Nrf2 nuclear retention due to nuclear-cytoplasmic depletion of Kelch-like ECH-associated protein 1 (Keap1) and Sequestosome-1(SQSTM1/p62) accumulation, leading to the persistent activation of Nrf2. Moreover, we established inhibited models of Cd-induced prolonged Nrf2 activation using siRNA-mediated gene silencing in vitro and pharmacological inhibition in vivo for subsequent assays. First, Cd-induced cytotoxicity, renal injury and concomitant oxidative stress were markedly alleviated by Nrf2 inhibition. Second, Cd-induced autophagy inhibition was notably alleviated by Nrf2 inhibition. Further, we revealed underlying molecular mechanisms of the crosstalk between persistent activation of Nrf2 and autophagy inhibition in Cd-induced nephrotoxicity. Data showed that Cd-induced lysosomal dysfunction evidenced by impaired lysosomal biogenesis and degradation capacity was markedly recovered by Nrf2 inhibition. Meanwhile, Cd-impaired autophagosome-lysosome fusion was obviously restored by Nrf2 inhibition. In conclusion, our findings revealed that persistent activation of Nrf2 promoted a vicious cycle of oxidative stress and autophagy inhibition in Cd-induced nephrotoxicity.


Asunto(s)
Cloruro de Cadmio/toxicidad , Enfermedades Renales/inducido químicamente , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Autofagia/efectos de los fármacos , Línea Celular , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Enfermedades Renales/patología , Lisosomas/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/genética , Ratas , Ratas Sprague-Dawley
14.
Poult Sci ; 99(11): 5430-5439, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33142460

RESUMEN

Mercuric chloride (HgCl2) is a widely distributed environmental pollutant with multiorgan toxicity including immune organs such as spleen. Selenium (Se) is an essential trace element in animal nutrition and exerts biological activity to antagonize organ toxicity caused by heavy metals. The objective of this study was to explore the underlying mechanism of the protective effects of Se against spleen damage caused by HgCl2 in chicken. Ninety male Hyline brown chicken were randomly divided into 3 groups namely Cont, HgCl2, and HgCl2+Se group. Chicken were provided with the standard diet and nontreated water, standard diet and HgCl2-treated water (250 ppm), and sodium selenite-treated diet (10 ppm) plus HgCl2-treated water (250 ppm), respectively. After being fed for 7 wk, the spleen tissues were collected, and spleen index, the microstructure of the spleen, and the indicators of oxidative stress, inflammation, apoptosis as well as heat shock proteins (HSP) were detected. First, the results of spleen index and pathological examination confirmed that Se exerted an antagonistic effect on the spleen injury induced by HgCl2. Second, Se ameliorated HgCl2-induced oxidative stress by decreasing the level of malondialdehyde and increasing the levels of glutathione, glutathione peroxidase, and total antioxidant capacity. Third, Se attenuated HgCl2-induced inflammation by decreasing the protein expression of nuclear factor kappa-B, inducible nitric oxide synthase, and cyclooxygenase-2, and the gene expression of interleukin (IL)-1ß, IL-6, IL-8, IL-12ß, IL-18 as well as tumor necrosis factor-α. Fourth, Se inhibited HgCl2-induced apoptosis by downregulating the protein expression of BCL2 antagonist/killer 1 and upregulating the protein expression of B-cell lymphoma-2. Finally, Se reversed HgCl2-triggered activation of HSP 60, 70, and 90. In conclusion, Se antagonized HgCl2-induced spleen damage in chicken, partially through the regulation of oxidative stress, inflammatory, and apoptotic signaling.


Asunto(s)
Apoptosis , Inflamación , Cloruro de Mercurio , Estrés Oxidativo , Selenio , Bazo , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Pollos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/veterinaria , Masculino , Cloruro de Mercurio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Distribución Aleatoria , Selenio/farmacología , Bazo/efectos de los fármacos
15.
Metallomics ; 12(12): 2098-2107, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33226392

RESUMEN

Cadmium (Cd) poisoning is characterized by multiple organ dysfunction in organisms, and the kidney is the main target organ of Cd toxicity. Trehalose (Tr), a multifunctional bioactive disaccharide, possesses potential kidney protective properties. Nevertheless, the specific biological function of Tr in antagonizing kidney injury induced by Cd remains to be elucidated. Herein, an in vivo model of Tr antagonizing Cd nephrotoxicity was established and the indictors related to kidney function, oxidative stress, and apoptosis were detected to investigate the molecular mechanism underlying the Tr-protection against Cd-induced kidney injury of rats. Firstly, Tr significantly declined the levels of blood urea nitrogen (BUN) and serum creatinine, and partially restored renal pathological changes caused by Cd. Secondly, Cd exposure significantly increased the malondialdehyde (MDA) content, and decreased the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and glutathione (GSH) in serum. However, Tr significantly ameliorated these abnormal alterations. Moreover, Tr regulated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway to suppress the Cd-induced nuclear translocation of Nrf2 and the up-regulation of heme oxygenase-1 (HO-1) and NAD (P) H quinone reductase-1 (NQO1). Meanwhile, Tr significantly reversed the increased Sequestosome-1(SQSTM1/p62) and decreased Kelch-like ECH associated protein-1 (Keap1) protein levels induced by Cd. Thirdly, further mechanistic exploration suggested that Tr inhibited the mitochondrial apoptotic signaling pathway induced by Cd. Collectively, the results indicated that Tr exerts antioxidant and anti-apoptosis functions involving the Nrf2 and mitochondrial apoptotic signaling pathways to protect against Cd-induced kidney injury in rats.


Asunto(s)
Apoptosis/efectos de los fármacos , Cadmio/efectos adversos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Sustancias Protectoras/uso terapéutico , Trehalosa/uso terapéutico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Citoprotección/efectos de los fármacos , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Trehalosa/farmacología
16.
Res Vet Sci ; 133: 4-11, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32916514

RESUMEN

Kidney is a primary target organ for mercuric chloride (HgCl2) toxicity. Selenium (Se) can exert antagonistic effect on heavy metals-induced organ toxicity by regulating the expression of selenoproteins. The objective of this study was to investigate the effect of HgCl2 on the gene expression of selenoproteins in chicken kidney. Sixty male Hyline brown chickens were randomly and evenly divided into two groups. After acclimatization for one week, chickens were provided with the standard diet as well as non-treated water (CON group), and standard diet as well as HgCl2-treated water (250 ppm, HgCl2 group). After seven weeks, kidney tissues were collected to examine the mRNA expression levels of 25 selenoproteins genes and protein expression levels of 4 selenoproteins. Moreover, correlation analysis and principal component analysis (PCA) were used to analyze the expression patterns of 25 selenoproteins. The results showed that HgCl2 exposure significantly decreased the mRNA expression of Glutathione peroxidase 1 (GPX1), GPX4, Thioredoxin reductase 2 (TXNRD2), Iodothyronine deiodinase 1 (DIO1), Methionine-Rsulfoxide reductase 1 (SELR), 15-kDa selenoprotein (SEP15), selenoprotein I (SELI), SELK, SELM, SELN, SELP, SELS, SELT, SELW, and SEPHS2. Meanwhile, HgCl2 exposure significantly increased the mRNA expression of GPX3, TXNRD1, and SELU. Western blot analysis showed that the expression levels of GPX3, TXNRD1, SELK, and SELN were concordant with these mRNA expression levels. Analysis results of selenoproteins expression patterns showed that HgCl2-induced the main disorder expression of selenoproteins with antioxidant activity and endoplasmic reticulum resident selenoproteins. In conclusion, selenoproteins respond to HgCl2 exposure in a characteristic manner in chicken kidney.


Asunto(s)
Pollos , Riñón/efectos de los fármacos , Cloruro de Mercurio/toxicidad , Selenoproteínas/metabolismo , Animales , Western Blotting/veterinaria , Pollos/genética , Pollos/metabolismo , Riñón/metabolismo , Masculino , Análisis por Micromatrices/veterinaria , Análisis de Componente Principal , ARN Mensajero/genética , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Selenio/farmacología , Selenoproteínas/genética , Transcriptoma
17.
Res Vet Sci ; 132: 250-256, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32659488

RESUMEN

Objectives of this study were to evaluate the alleviating effects of a commercial beta-1,3-glucan product (Aleta, containing 50% beta-1,3-glucan, Kemin Industries) on metabolic stress in transition Holstein cows as reflected by circulating metabolites and enzymes. Fifty-four multiparous Holstein cows were randomly allocated to three groups with 18 cows each. Cows in each group received a commercial basal diet or the basal diet supplemented with Aleta calculated to supply 5 or 10 g of Aleta per cow per day. Blood samples were collected at day -21, 1, and 21 relative to calving for determination of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDLC), very low density lipoprotein (VLDL), glucose, insulin, ß-hydroxybutyric acid (BHBA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamyl transpeptidase (GGT), and non-esterified fatty acid (NEFA). Supplementation with Aleta markedly elevated serum concentrations of TG, TC, HDLC, LDL-C and VLDL, implying its positive effect on lipid metabolism in transition dairy cows. Aleta treatment significantly decreased the serum concentrations of NEFA and BHBA, but markedly elevated the serum concentrations of glucose and insulin. Also, Aleta treatment significantly elevated the dry matter intake and milk production in postpartum cows, indicating the alleviating effect of Aleta on negative energy balance in transition cows. Moreover, Aleta treatment significantly reduced the serum activities of AST, ALT and GGT, indicating its hepatoprotective effect on transition cows. These results suggest that Aleta supplementation may help to improve fat metabolism disorder initiated by negative energy balance in transition dairy cows.


Asunto(s)
Bovinos/sangre , Suplementos Dietéticos , beta-Glucanos/farmacología , Ácido 3-Hidroxibutírico/sangre , Alimentación Animal , Animales , Bovinos/metabolismo , Dieta/veterinaria , Metabolismo Energético , Ácidos Grasos no Esterificados/sangre , Femenino , Glucosa , Insulina/sangre , Lactancia , Metabolismo de los Lípidos , Periodo Posparto/metabolismo
18.
Biol Trace Elem Res ; 193(1): 234-240, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30805876

RESUMEN

Cadmium (Cd), as one of the most toxic heavy metals, has become a widespread environmental contaminant and threats the food quality and safety. The protective effect of selenium (Se) on Cd-induced tissue lesion and cytotoxicity in chicken has been extensively reported. The objective of this study was to investigate the antagonistic effect of Se on Cd-induced damage of chicken pectoral muscles via analyzing the trace elements and amino acids profiles. Firstly, 19 trace elements contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that under Cd exposure, the contents of Cd, lead (Pb), mercury (Hg), aluminum (Al), and lithium (Li) were significantly elevated, and the contents of Se, iron (Fe), and chromium (Cr) were significantly reduced. However, supplementing Se significantly reversed the effects induced by Cd. Secondly, the amino acids contents were detected by L-8900 automatic amino acid analyzer. The results showed that supplementing Se increased significantly Cd-induced decrease of valine (Val), leucine (Leu), arginine (Arg), and proline (Pro). Thirdly, the results of principal component analysis (PCA) showed that cobalt (Co), manganese (Mn), silicium (Si), and Pro may play special roles in response to the process of Se antagonizes Cd-induced damage of pectoral muscles in chickens. In summary, these results indicated that different trace elements and amino acids possessed and exhibited distinct responses to suffer from Se and/or Cd in chicken pectoral muscles. Notably, Se alleviated Cd-induced adverse effects by regulating trace elements and amino acids profiles in chicken pectoral muscles.


Asunto(s)
Aminoácidos/metabolismo , Cadmio/toxicidad , Músculos Pectorales/metabolismo , Selenio/fisiología , Oligoelementos/metabolismo , Animales , Pollos , Músculos Pectorales/patología
19.
Metallomics ; 11(12): 2043-2051, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31650140

RESUMEN

Cadmium (Cd) is a persistent environmental contaminant and induces neurotoxicity in animals. Trehalose (Tre) exhibits powerful neuroprotective effects in certain brain injury models. Herein, we revealed the specific molecular mechanism underlying the protective effects of Tre against Cd-induced brain damage in rats. Firstly, the results showed that Tre significantly ameliorated brain pathological injury induced by Cd. Secondly, Cd-induced down-regulation of total anti-oxidation capacity (T-AOC) and up-regulation of methane dicarboxylic aldehyde (MDA) in brain tissues were significantly reversed by Tre treatment. Importantly, the augmentation of nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) caused by Cd was significantly inhibited by Tre treatment. Thirdly, the levels of autophagy marker proteins were measured and the results showed that Tre significantly reversed the up-regulation of light chain 3II (LC-3II) and sequestosome 1 (SQSTM-1/p62) caused by Cd exposure. Finally, the apoptosis rate and the levels of apoptosis marker proteins including B cell leukemia/lymphoma 2 (Bcl2) and Bcl2-associated X protein (Bax) were also measured and the results showed that Cd-induced apoptosis was markedly inhibited by Tre treatment. Collectively, our data suggested that Tre exerted its neuroprotective effects by ameliorating oxidative stress, autophagy inhibition, and apoptosis induced by Cd in rat brains. In addition, the Nrf2 signaling pathway, which is continuously activated by Cd, may contribute to brain injury.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Lesiones Encefálicas/prevención & control , Cadmio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Trehalosa/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Proteína Sequestosoma-1/metabolismo
20.
Ecotoxicol Environ Saf ; 181: 224-230, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31195231

RESUMEN

Cadmium (Cd), as a kind of ubiquitous and highly toxic heavy metal pollutants, has been known to result in immunotoxicity in animals. As a multifunctional bioactivity disaccharide, trehalose (Tre) is characterized by antioxidative, antiapoptotic, and accelerating autophagy. In this study, Sprague-Dawley (SD) rats were fed with cadmium chloride (CdCl2) and/or Tre to explore the molecular mechanisms of Tre-protected against spleen injury caused by Cd exposure. Firstly, the results showed that Tre partially recovered splenic pathological changes induced by Cd exposure. Secondly, Tre dramatically declined the level of methane dicarboxylic aldehyde (MDA) and elevated the level of total antioxidant capacity (T-AOC) to weaken oxidative stress caused by Cd exposure in spleen tissue. Moreover, the results showed that Tre significantly suppressed Cd-induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and up-regulated the protein expression of nuclear Nrf2. Thirdly, Tre remarkably reduced the protein expression of sequestosome 1 (p62/SQSTM1) and microtubule-associated protein light chain 3II (LC-3II) to restore autophagy inhibition induced by Cd exposure. Finally, the results of TUNEL and the expression of apoptosis marker proteins showed that Tre significantly inhibited Cd-induced apoptosis in spleen tissue to exert its protective effects. In summary, the results indicated that Tre modulated Nrf2 signaling pathway, which interacted with apoptosis and autophagy to against Cd-induced spleen injury, providing potential therapeutic strategies for the prevention and treatment of Cd-related immune system diseases.


Asunto(s)
Cloruro de Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Bazo/efectos de los fármacos , Trehalosa/farmacología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Bazo/metabolismo , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA