Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Res Bull ; : 111072, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243948

RESUMEN

Statins are well-tolerated and widely available lipid-lowering medications with neuroprotective effects against traumatic brain injury (TBI). However, whether delayed statin therapy starting in the subacute phase promotes recovery after TBI is unknown. Elongation of the very long-chain fatty acid protein 1 (ELOVL1) is involved in astrocyte-mediated neurotoxicity, but its role in TBI and the relationship between ELOVL1 and statins are unclear. We hypothesized that delayed simvastatin treatment promotes neurological functional recovery after TBI by regulating the ELOVL1-mediated production of very long-chain fatty acids (VLCFAs). ICR male mice received daily intragastric administration of 1, 2 or 5mg/kg simvastatin on Days 1-14, 3-14, 5-14, or 7-14 after cryogenic TBI (cTBI). The results showed that simvastatin promoted motor functional recovery in a dose-dependent manner, with a wide therapeutic window of at least 7 days postinjury. Meanwhile, simvastatin inhibited astrocyte and microglial overactivation and glial scar formation, and increased total dendritic length, neuronal complexity and spine density on day 14 after cTBI. The up-regulation of ELOVL1 expression and saturated VLCFAs concentrations in the cortex surrounding the lesion caused by cTBI was inhibited by simvastatin, which was related to the inhibition of the mTOR signaling. Overexpression of ELOVL1 in astrocytes surrounding the lesion using HBAAV2/9-GFAP-m-ELOVL1-3xFlag-EGFP partially attenuated the benefits of simvastatin. These results showed that delayed simvastatin treatment promoted functional recovery and brain tissue repair after TBI through the downregulation of ELOVL1 expression by inhibiting mTOR signaling. Astrocytic ELOVL1 may be a potential target for rehabilitation after TBI.

2.
Exp Neurol ; 380: 114892, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047809

RESUMEN

T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO2 postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8-/- mice received DCPC daily by transiently inhaling 10% CO2 after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8-/- mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8-/- mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14-28 were much weaker than those of DCPC on Days 3-28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.


Asunto(s)
Astrocitos , Lesiones Traumáticas del Encéfalo , Dióxido de Carbono , Ratones Endogámicos C57BL , Animales , Astrocitos/metabolismo , Astrocitos/patología , Ratones , Dióxido de Carbono/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Recuperación de la Función/fisiología
3.
Stroke ; 55(8): 2151-2162, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38946544

RESUMEN

BACKGROUND: GPR65 (G protein-coupled receptor 65) can sense extracellular acidic environment to regulate pathophysiological processes. Pretreatment with the GPR65 agonist BTB09089 has been proven to produce neuroprotection in acute ischemic stroke. However, whether delayed BTB09089 treatment and neuronal GPR65 activation promote neurorestoration remains unknown. METHODS: Ischemic stroke was induced in wild-type (WT) or GPR65 knockout (GPR65-/-) mice by photothrombotic ischemia. Male mice were injected intraperitoneally with BTB09089 every other day at days 3, 7, or 14 poststroke. AAV-Syn-GPR65 (adenoassociated virus-synapsin-GPR65) was utilized to overexpress GPR65 in the peri-infarct cortical neurons of GPR65-/- and WT mice. Motor function was monitored by grid-walk and cylinder tests. The neurorestorative effects of BTB09089 were observed by immunohistochemistry, Golgi-Cox staining, and Western blotting. RESULTS: BTB09089 significantly promoted motor outcomes in WT but not in GPR65-/- mice, even when BTB09089 was delayed for 3 to 7 days. BTB09089 inhibited the activation of microglia and glial scar progression in WT but not in GPR65-/- mice. Meanwhile, BTB09089 reduced the decrease in neuronal density in WT mice, but this benefit was abolished in GPR65-/- mice and reemerged by overexpressing GPR65 in peri-infarct cortical neurons. Furthermore, BTB09089 increased the GAP43 (growth-associated protein-43) and synaptophysin puncta density, dendritic spine density, dendritic branch length, and dendritic complexity by overexpressing GPR65 in the peri-infarct cortical neurons of GPR65-/- mice, which was accompanied by increased levels of p-CREB (phosphorylated cAMP-responsive element-binding protein). In addition, the therapeutic window of BTB09089 was extended to day 14 by overexpressing GPR65 in the peri-infarct cortical neurons of WT mice. CONCLUSIONS: Our findings indicated that delayed BTB09089 treatment improved neurological functional recovery and brain tissue repair poststroke through activating neuronal GRP65. GPR65 overexpression may be a potential strategy to expand the therapeutic time window of GPR65 agonists for neurorehabilitation after ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Ratones Noqueados , Neuronas , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/agonistas , Ratones , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Rehabilitación de Accidente Cerebrovascular , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL
4.
J Cardiovasc Pharmacol ; 83(5): 474-481, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113918

RESUMEN

ABSTRACT: Studies have examined the therapeutic effect of levosimendan on cardiovascular diseases such as heart failure, perioperative cardiac surgery, and septic shock, but the specific mechanism in mice remains largely unknown. This study aimed to investigate the relaxation mechanism of levosimendan in the thoracic aorta smooth muscle of mice. Levosimendan-induced relaxation of isolated thoracic aortic rings that were precontracted with norepinephrine or KCl was recorded in an endothelium-independent manner. Vasodilatation by levosimendan was not associated with the production of the endothelial relaxation factors nitric oxide and prostaglandins. The voltage-dependent K + channel (K V ) blocker (4-aminopyridine) and selective K Ca blocker (tetraethylammonium) had no effect on thoracic aortas treated with levosimendan, indicating that K V and K Ca channels may not be involved in the levosimendan-induced relaxation mechanism. Although the inwardly rectifying K + channel (K ir ) blocker (barium chloride) and the K ATP channel blocker (glibenclamide) significantly inhibited levosimendan-induced vasodilation in the isolated thoracic aorta, barium chloride had a much stronger inhibitory effect on levosimendan-induced vasodilation than glibenclamide, suggesting that levosimendan-induced vasodilation may be mediated by K ir channels. The vasodilation effect and expression of K ir 2.1 induced by levosimendan were further enhanced by the PKC inhibitor staurosporine. Extracellular calcium influx was inhibited by levosimendan without affecting intracellular Ca 2+ levels in the isolated thoracic aorta. These results suggest that K ir channels play a more important role than K ATP channels in regulating vascular tone in larger arteries and that the activity of the K ir channel is enhanced by the PKC pathway.


Asunto(s)
Aorta Torácica , Músculo Liso Vascular , Proteína Quinasa C , Simendán , Vasodilatación , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Simendán/farmacología , Masculino , Vasodilatación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Ratones , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Vasodilatadores/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Bloqueadores de los Canales de Potasio/farmacología
5.
Neuromolecular Med ; 25(4): 632-643, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37843792

RESUMEN

Orexin and its receptors are closely related to the pathogenesis of Alzheimer's disease (AD). Although the expression of orexin system genes under physiological condition has circadian rhythm, the diurnal characteristics of orexin system genes, and its potential role in the pathogenesis in AD are unknown. In the present study, we hope to elucidate the diurnal characteristics of orexin system genes at the early stage of AD, and to investigate its potential role in the development of AD neuropathology. We firstly detected the mRNA levels of orexin system genes, AD risk genes and core clock genes (CCGs) in hypothalamus and hippocampus in 6-month-old male 3xTg-AD mice and C57BL/6J (wild type, WT) control mice, then analyzed diurnal expression profiles of all genes using JTK_CYCLE algorithm, and did the correlation analysis between expression of orexin system genes and AD risk genes or CCGs. In addition, the expression of ß-amyloid protein (Aß) and phosphorylated tau (p-tau) protein were measured. The results showed that the diurnal mRNA expression profiles of PPO, OX1R, OX2R, Bace2, Bmal1, Per1, Per2 and Cry1 in the hypothalamus, and gene expression of OX1R, OX2R, Bace1, Bmal1, Per1 and Cry2 in the hippocampus in 3xTg-AD mice were different from that in WT mice. Furthermore, there is positive correlation between orexin system genes and AD risk genes or CCGs in the brain in 3xTg-AD mice. In addition, the expression of Aß and p-tau in hippocampus in 3xTg-AD mice were significantly increased, and the expression of p-tau is higher in night than in day. These results indicate that the abnormal expression profiles of orexin system genes and its interaction with AD risk genes or CCGs might exert important role in the pathogenesis of AD, which will increase the expression of Aß and p-tau, and accelerate the development of AD.


Asunto(s)
Enfermedad de Alzheimer , Orexinas , Animales , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Factores de Transcripción ARNTL/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Orexinas/genética , ARN Mensajero/genética , Proteínas tau/genética , Proteínas tau/metabolismo
6.
CNS Neurosci Ther ; 29(11): 3378-3390, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37208955

RESUMEN

AIMS: Few treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI. METHODS: Using a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time-courses (one/two/three cycles of 10-min inhalation/10-min break) at Days 3-7, 3-14 or 7-18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP-43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno-associated virus were applied to investigate the molecular mechanisms. RESULTS: DCPC significantly promoted recovery of motor function in a concentration and time-course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3 . DCPC also increased puncta density of GAP-43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation-related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC. CONCLUSIONS: We first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dióxido de Carbono , Factor 7 Regulador del Interferón , Animales , Ratones , Lesiones Traumáticas del Encéfalo/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/uso terapéutico , Modelos Animales de Enfermedad , Proteína GAP-43/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/uso terapéutico , Sinaptofisina/metabolismo , Sinaptofisina/uso terapéutico
7.
Transl Stroke Res ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36853417

RESUMEN

Acidic postconditioning by transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects in the acute phase of stroke. However, the effects of delayed chronic acidic postconditioning (DCAPC) initiated during the subacute phase of stroke or other acute brain injuries are unknown. Mice received daily DCAPC by inhaling 5%/10%/20% CO2 for various durations (three cycles of 10- or 20-min CO2 inhalation/10-min break) at days 3-7, 7-21, or 3-21 after photothrombotic stroke. Grid-walk, cylinder, and gait tests were used to assess motor function. DCAPC with all CO2 concentrations significantly promoted motor functional recovery, even when DCAPC was delayed for 3-7 days. DCAPC enhanced the puncta density of GAP-43 (a marker of axon growth and regeneration) and synaptophysin (a marker of synaptogenesis) and reduced the amoeboid microglia number, glial scar thickness and mRNA expression of CD16 and CD32 (markers of proinflammatory M1 microglia) compared with those of the stroke group. Cerebral blood flow (CBF) increased in response to DCAPC. Furthermore, the mRNA expression of TDAG8 (a proton-activated G-protein-coupled receptor) was increased during the subacute phase of stroke, while DCAPC effects were blocked by systemic knockout of TDAG8, except for those on CBF. DCAPC reproduced the benefits by re-expressing TDAG8 in the peri-infarct cortex of TDAG8-/- mice infected with HBAAV2/9-CMV-TDAG8-3flag-ZsGreen. Taken together, we first showed that DCAPC promoted functional recovery and brain tissue repair after stroke with a wide therapeutic time window of at least 7 days after stroke. Brain-derived TDAG8 is a direct target of DCAPC that induces neuroreparative effects.

8.
Neurochem Int ; 148: 105080, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34048845

RESUMEN

Astrocytes play a pivotal role in maintaining the central nervous system (CNS) homeostasis and function. In response to CNS injuries and diseases, reactive astrocytes are triggered. By purifying and genetically profiling reactive astrocytes, it has been now found that astrocytes can be activated into two polarization states: the neurotoxic or pro-inflammatory phenotype (A1) and the neuroprotective or anti-inflammatory phenotype (A2). Although the simple dichotomy of the A1/A2 phenotypes does not reflect the wide range of astrocytic phenotypes, it facilitates our understanding of the reactive state of astrocytes in various CNS disorders. This article reviews the recent evidences regarding A1/A2 astrocytes, including (a) the specific markers and morphological characteristics, (b) the effects of A1/A2 astrocytes on the neurovascular unit, and (c) the molecular mechanisms involved in the phenotypic switch of astrocytes. Although many questions remain, a deeper understanding of different phenotypic astrocytes will eventually help us to explore effective strategies for neurological disorders by targeting astrocytes.


Asunto(s)
Astrocitos/patología , Enfermedades del Sistema Nervioso Central/patología , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/patología , Animales , Humanos , Enfermedades Neuroinflamatorias/patología
9.
Brain Res Bull ; 164: 146-156, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858129

RESUMEN

Accumulating evidence suggests that chronic metformin posttreatment offers potent neuroreparative effects against acute brain injury. However, in previous studies, metformin was not initially administered beyond 24 h postinjury, and the effects of delayed metformin treatment in traumatic brain injury (TBI) and other types of acute brain injury and the related mechanisms are unclear. To test this, male C57BL/6 mice received once daily metformin treatment (20, 50 or 100 mg/kg/d, i.p.) at day 1-14, day 1-2, day 1-10, day 3-10, day 5-12 or day 5-28 after cryogenic TBI (cTBI). The results showed that 100 mg/kg/d metformin administered at day 1-14 postinjury significantly promoted motor functional recovery in the beam walking and gait tests and reduced the infarct volume. Metformin (100 mg/kg/d) administered at day 1-10 or day 3-10 but not day 1-2 or day 5-12 after cTBI significantly improved motor functional outcomes at day 7 and 14, and reduced the infarct volume at day 14. Interestingly, the therapeutic time window was further expanded when the duration of metformin treatment starting at day 5 postinjury was extended to 2 weeks. Furthermore, compared with cTBI, the administration of metformin at day 3-10 or day 5-28 after cTBI significantly elevated the expression of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and growth associated protein 43 (an axonal regeneration marker) and the number of vascular branch points and decreased the area of glial scar and the number of amoeboid microglia in the peri-infarct area at day 14 or 28 postinjury. The above beneficial effects of metformin were blocked by the intracerebroventricular injection of the AMPK inhibitor compound C (40 µg/mouse/d). Our data provide the first evidence that metformin has a wide therapeutic time window for at least 5 days after cTBI, during which it can improve functional recovery by promoting tissue repair and inhibiting glial scar formation and microglial activation in a central AMPK-dependent manner.


Asunto(s)
Adenilato Quinasa/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Destreza Motora/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Animales , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Hipoglucemiantes/farmacología , Masculino , Metformina/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos
10.
J Biomater Sci Polym Ed ; 31(14): 1793-1805, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32510282

RESUMEN

Most chemotherapeutic drugs commonly suffer from low aqueous solubility that can potentially limit drugs absorption. Drug nanomerization is an advanced approach to overcoming their poor water-solubility. In this study, class I hydrophobin recombinant HGFI (rHGFI)-based curcumin (Cur) nanoparticles (rHGFI-Cur) were prepared by freeze-drying method. The rHGFI-Cur nanocomposites were characterized by contact angle, transmission electron microscopy, fluorescence microscopy and dynamic light scattering. The results showed that rHGFI could lead to the wettability conversion and stability improved of Cur in water. X-ray photoelectron spectroscopy and Fourier transform infrared suggested that rHGFI could non-covalently bind to Cur to render them hydrophilic through hydrophobic forces. Additionally, drug release and cytotoxicity assays illustrated that rHGFI-Cur nanoparticles could facilitate Cur release and exhibited higher cytotoxicity than free Cur for human esophageal cancer cells TE-1. Thus, it suggested that rHGFI has a great potential application for hydrophobic drug delivery without toxicity.[Formula: see text].


Asunto(s)
Curcumina , Nanopartículas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Agua
11.
Int J Biol Macromol ; 141: 1191-1198, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518622

RESUMEN

To control release of drugs sensitive to gastrointestinal (GI) environmental effects or irritating to stomach, such as diclofenac sodium (DS), sodium alginate (SA) hydrogel beads are gaining considerable attention gradually. However, due to high swelling ratio, the sustained release performance of SA hydrogel is still far from satisfactory. The objective of this research was to develop new drug delivery device based on SA and ZnO nanoparticles (ZnO NPs). ZnO NPs were prepared by direct precipitation method, and carboxymethyl chitosan (CMCS) acted as stabilizing agent to dominate the preparation of ZnO NPs. The incorporation of CMCS-ZnO NPs resulted in slower and sustained release of DS in vitro. In vivo pharmacokinetics studies showed the bioavailability of DS was better after oral administration of DS-loaded SA/CMCS-ZnO hydrogel beads. These results suggested that SA/CMCS-ZnO hydrogel beads will be a prospective material for loading drugs sensitive to GI environmental effects or irritating to stomach.


Asunto(s)
Alginatos/química , Quitosano/análogos & derivados , Diclofenaco/química , Liberación de Fármacos , Hidrogeles/química , Microesferas , Óxido de Zinc/química , Células 3T3 , Animales , Quitosano/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidad , Ratones , Ratas , Distribución Tisular
12.
Food Chem ; 283: 397-403, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30722890

RESUMEN

To deal with serious environmental pollution resulting from plastic packaging materials, biodegradable films using chitosan (CS) are gaining considerable increase gradually. However, chitosan films lack important properties to meet the preserved demands. This study aimed to develop new bio-based films incorporated with carboxymethyl chitosan-ZnO (CMCS-ZnO) nanoparticles and sodium alginate (SA) to overcome the weakness of CS films. CMCS-ZnO nanoparticles were successfully synthesized in the matrix of CMCS through direct precipitation method, which showed an average diameter of 100 nm. Multilayer films with CS film as the outer layer and SA film as the inner layer were prepared by solution casting method. The addition of CMCS-ZnO nanoparticles led to enhanced tensile strength, and to better water vapor resistance. The as-prepared films exhibited distinctive antibacterial activity against S. aureus and E. coli. The results suggested that the as-prepared film is expected to be a promising material for food packaging.


Asunto(s)
Antibacterianos/química , Quitosano/análogos & derivados , Nanopartículas del Metal/química , Nanocompuestos/química , Óxido de Zinc/química , Alginatos/química , Antibacterianos/farmacología , Quitosano/química , Escherichia coli/efectos de los fármacos , Embalaje de Alimentos , Nanocompuestos/toxicidad , Tamaño de la Partícula , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Resistencia a la Tracción , Agua/química
13.
Int J Biol Macromol ; 121: 1118-1125, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30340010

RESUMEN

In this study, we fabricated a series of novel sodium alginate/ZnO hydrogel beads to optimize the release profile of curcumin (Cur) and to avoid the burst release associated with pure hydrogels, which were used to mitigate the weaknesses of Cur, such as rapid physiological clearance and sensitivity to ultraviolet (UV) light and alkaline solutions. The results show that the composite hydrogel beads exhibit good pH sensitivity and controlled-release capacity, which could prolong the residence time of Cur in the gastrointestinal tract. After exposure to UV irradiation for 6 h, the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging capacity of Cur-loaded hydrogel beads was decreased by only 13.70%, whereas that of pure Cur decreased by 62.04% under the same conditions; therefore, the encapsulated Cur showed a higher antioxidant activity. The composite hydrogel beads protected the Cur from light degradation and can therefore prolong the antioxidant activity of Cur. These results are beneficial for the design of delivery systems to entrap and control the release of unstable drugs.


Asunto(s)
Alginatos/química , Antioxidantes/química , Curcumina/química , Portadores de Fármacos/química , Liberación de Fármacos , Hidrogeles/química , Óxido de Zinc/química , Compuestos de Bifenilo/química , Curcumina/metabolismo , Tracto Gastrointestinal/metabolismo , Concentración de Iones de Hidrógeno , Microesferas , Picratos/química
14.
Neurosci Lett ; 678: 68-75, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29727731

RESUMEN

Glial scar impedes axon regeneration and functional recovery following traumatic brain injury (TBI). Although it has been shown that rapamycin (a specific inhibitor of mammalian target of rapamycin) can reduce astrocyte reactivation in the early stage of TBI, its effect on glial scar formation has not been characterized in TBI and other acute brain injury models. To test this, ICR mice received daily administration of rapamycin (0.5 or 1.5 mg/kg, i.p.) beginning at 1 h after cryogenic TBI (cTBI). The results showed that at 3 d post-injury, 1.5 mg/kg rapamycin increased cTBI-induced motor functional deficits and infarct size, and attenuated astrocyte reactivation in the ipsilateral cortex, while 0.5 mg/kg rapamycin did not worsen brain damage and only slightly attenuated astrocyte reactivation. Furthermore, at 7 and 14 d after cTBI, 0.5 mg/kg rapamycin group showed a better motor functional performance than cTBI group. At 14 d post-injury, 0.5 mg/kg rapamycin significantly reduced the area and thickness of glial scar and chondroitin sulfate proteoglycan expression, accompanied by decreased expression of p-S6 and enhanced expression of growth associated protein 43 (an axon regeneration marker) in the region of glial scar. Our data suggest that long-term treatment with rapamycin can inhibit glial scar formation after cTBI, which may be involved in the mechanisms of increased axon regeneration and improved neurological functional recovery, and low-dose rapamycin may be more beneficial for such a therapy.


Asunto(s)
Astrocitos/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/complicaciones , Encéfalo/efectos de los fármacos , Cicatriz/metabolismo , Sirolimus/administración & dosificación , Animales , Astrocitos/metabolismo , Axones/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cicatriz/etiología , Frío , Masculino , Ratones Endogámicos ICR , Regeneración Nerviosa/efectos de los fármacos , Recuperación de la Función , Prueba de Desempeño de Rotación con Aceleración Constante , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
15.
Neurochem Int ; 107: 43-56, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28087295

RESUMEN

Ischemic postconditioning (PostC) is defined as a series of rapid intermittent interruptions of blood flow at the phase of reperfusion, which produces neuroprotection against cerebral ischemia/reperfusion injury via mobilizing the brain's own endogenous adaptive mechanisms. Now the concept of conventional ischemic PostC has been extended to limb remote ischemic PostC and chemical PostC with hypoxia, volatile anesthetic, CO2, etc. According to the different temporal profile of PostC, it is divided into rapid and delayed PostC. Rapid PostC is applied within a few seconds to minutes after reperfusion, while delayed PostC is applied at a few hours to days after reperfusion. Although the neuroprotective mechanisms of PostC are not completely elucidated, a series of mechanisms have been found to connect with PostC in the central nervous system, such as regulating synaptic signaling, attenuating oxidative stress and inflammation, maintaining mitochondrial integrity, inhibiting endoplasmic reticulum stress, regulating autophagy, activating PI3K/Akt pathway, inhibiting apoptosis, protecting neurovascular unit, etc. Based on these multiple protective mechanisms, PostC has high expectations to translate to the clinic, but a few issues should be resolved such as the time window, risks, efficiency, the impact of age, gender, hypertension, hyperlipidemia and t-PA, and clinical maneuverability. Even so, PostC could soon be at the bedside if the clinical trials are carefully planned.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Poscondicionamiento Isquémico/métodos , Fármacos Neuroprotectores/uso terapéutico , Animales , Humanos , Neuroprotección/efectos de los fármacos , Neuroprotección/fisiología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
16.
J Cereb Blood Flow Metab ; 34(2): 275-83, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24192637

RESUMEN

Acidosis is one of the key components in cerebral ischemic postconditioning that has emerged recently as an endogenous strategy for neuroprotection. We set out to test whether acidosis treatment at reperfusion can protect against cerebral ischemia/reperfusion injury. Adult male C57BL/6 J mice were subjected to 60-minute middle cerebral arterial occlusion followed by 24-hour reperfusion. Acidosis treatment by inhaling 10%, 20%, or 30% CO2 for 5 or 10 minutes at 5, 50, or 100 minutes after reperfusion was applied. Our results showed that inhaling 20% CO2 for 5 minutes at 5 minutes after reperfusion-induced optimal neuroprotection, as revealed by reduced infarct volume. Attenuating brain acidosis with NaHCO3 significantly compromised the acidosis or ischemic postconditioning-induced neuroprotection. Consistently, both acidosis-treated primary cultured cortical neurons and acute corticostriatal slices were more resistant to oxygen-glucose deprivation/reperfusion insult. In addition, acidosis inhibited ischemia/reperfusion-induced apoptosis, caspase-3 expression, cytochrome c release to cytoplasm, and mitochondrial permeability transition pore (mPTP) opening. The neuroprotection of acidosis was inhibited by the mPTP opener atractyloside both in vivo and in vitro. Taken together, these findings indicate that transient mild acidosis treatment at reperfusion protects against cerebral ischemia/reperfusion injury. This neuroprotection is likely achieved, at least partly, by inhibiting mPTP opening and mitochondria-dependent apoptosis.


Asunto(s)
Acidosis , Dióxido de Carbono/farmacología , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión , Bicarbonato de Sodio/sangre , Accidente Cerebrovascular , Acidosis/sangre , Acidosis/inducido químicamente , Acidosis/tratamiento farmacológico , Animales , Isquemia Encefálica/sangre , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/fisiopatología , Masculino , Ratones , Daño por Reperfusión/sangre , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/fisiopatología , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/fisiopatología
17.
CNS Neurosci Ther ; 19(1): 30-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23167958

RESUMEN

AIM: Cerebral ischemic postconditioning has emerged recently as a kind of endogenous strategy for neuroprotection. We set out to test whether hypoxia or glucose deprivation (GD) would substitute for ischemia in postconditioning. METHODS: Adult male C57BL/6J mice were treated with postconditioning evoked by ischemia (bilateral common carotid arteries occlusion) or hypoxia (8% O(2) ) after 45-min middle cerebral arterial occlusion. Corticostriatal slices from mice were subjected to 1-min oxygen-glucose deprivation (OGD), GD, or oxygen deprivation (OD) postconditioning at 5 min after 15-min OGD. RESULTS: Hypoxic postconditioning did not decrease infarct volume or improve neurologic function at 24 h after reperfusion, while ischemic postconditioning did. Similarly, OGD and GD but not OD postconditioning attenuated the OGD/reperfusion-induced injury in corticostriatal slices. The effective duration of low-glucose (1 mmol/L) postconditioning was longer than that of OGD postconditioning. Moreover, OGD and GD but not OD postconditioning reversed the changes of glutamate, GABA, glutamate transporter-1 protein expression, and glutamine synthetase activity induced by OGD/reperfusion. CONCLUSIONS: These results suggest that the transient lack of glucose but not oxygen plays a key role in ischemic postconditioning-induced neuroprotection, at least partly by regulating glutamate metabolism. Low-glucose postconditioning might be a clinically safe and feasible therapeutic approach against cerebral ischemia/reperfusion injury.


Asunto(s)
Infarto Encefálico/etiología , Infarto Encefálico/prevención & control , Glucosa/deficiencia , Hipoxia/complicaciones , Infarto de la Arteria Cerebral Media/complicaciones , Reperfusión/métodos , Animales , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico/metabolismo , Hipoxia/patología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
18.
CNS Neurosci Ther ; 18(8): 683-90, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22742831

RESUMEN

AIM: To investigate the effect of chronic H1-antihistamine treatment on seizure susceptibility after drug withdrawal in nonepileptic rats and to further study its relation to glutamine synthetase (GS), which is the key enzyme for glutamate metabolism and gamma aminobutyric acid (GABA) synthesis. METHODS: After drug withdrawal from a 2-week treatment with diphenhydramine or pyrilamine, seizure susceptibility was determined by amygdaloid kindling or pentylenetetrazol model; meanwhile, the GS expression or activity was analyzed. The glutamine, glutamate, and GABA contents were measured by high-performance liquid chromatography. RESULTS: Seizure susceptibility significantly increased in amygdaloid kindling and pentylenetetrazol model 10 days after drug withdrawal from a 2-week treatment with H1-antihistamines. Meanwhile, GS activity and expression in the cortex or hippocampus decreased simultaneously with a marked decline of glutamine and GABA content. Comparable inhibition of GS activity by methionine sulfoximine was also sufficient to increase the susceptibility, while supplementation with glutamine reversed the high susceptibility 10 days after diphenhydramine withdrawal. Moreover, the seizure susceptibility increased 10 days after diphenhydramine withdrawal in wild-type mice but not in histidine decarboxylase knockout mice, which lack histamine. CONCLUSIONS: Chronic H1-antihistamine treatment produces long-lasting increase in seizure susceptibility in nonepileptic rodents after drug withdrawal and its mechanism involves impairment of GS through blocking the action of histamine.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Antagonistas de los Receptores Histamínicos H1/efectos adversos , Convulsiones/epidemiología , Convulsiones/etiología , Síndrome de Abstinencia a Sustancias/enzimología , Síndrome de Abstinencia a Sustancias/epidemiología , Animales , Astrocitos/enzimología , Astrocitos/fisiología , Western Blotting , Cromatografía Líquida de Alta Presión , Convulsivantes , Electrochoque , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Histidina Descarboxilasa/deficiencia , Histidina Descarboxilasa/genética , Inmunohistoquímica , Excitación Neurológica , Masculino , Metionina Sulfoximina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pentilenotetrazol , Ratas , Ratas Sprague-Dawley , Convulsiones/inducido químicamente , Ácido gamma-Aminobutírico/metabolismo
19.
Neurosci Lett ; 523(1): 3-8, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22583767

RESUMEN

Ischemic preconditioning protects against cerebral ischemia. Recent investigations indicated that acidic preconditioning (APC) protects against ischemia-induced cardiomyocytes injury. However, it is not clear whether APC can protect against cerebral ischemia. To address this issue, C57BL/6 mice were exposed 3 times at 10-min intervals to a normoxic atmosphere containing 20% CO(2) for 5 min before being further subjected to bilateral common carotid artery occlusion. APC reversed the ischemia-induced brain injury as revealed by improved performance in passive avoidance experiments and decreased neuron loss in the hippocampal CA1 region. Consistently, both APC-treated brain slices and primary cultured neurons were more resistant to oxygen-glucose-deprivation (OGD)-induced injury, in a pH- and time-dependent manner, as revealed by reversed cell/tissue viability. In addition, the APC treatment prevented OGD-induced mitochondrial transmembrane potential loss and apoptosis, which was inhibited by the mitochondrial permeability transport pore opener atractyloside. Taken together, these findings indicated that APC protects against ischemia-induced neuronal injury. The beneficial effects may be attributed, at least in part, to decreased mitochondria-dependent neuronal apoptosis.


Asunto(s)
Química Encefálica/efectos de los fármacos , Lesiones Encefálicas/fisiopatología , Lesiones Encefálicas/terapia , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/terapia , Dióxido de Carbono/administración & dosificación , Precondicionamiento Isquémico/métodos , Acidosis , Animales , Lesiones Encefálicas/diagnóstico , Isquemia Encefálica/diagnóstico , Concentración de Iones de Hidrógeno/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Resultado del Tratamiento
20.
J Cereb Blood Flow Metab ; 31(1): 305-14, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20588322

RESUMEN

We hypothesized that activation of the central histaminergic system is required for neuroprotection induced by hypoxic preconditioning. Wild-type (WT) and histidine decarboxylase knockout (HDC-KO) mice were preconditioned by 3 hours of hypoxia (8% O(2)) and, 48 hours later, subjected to 30 minutes of middle cerebral artery (MCA) occlusion, followed by 24 hours of reperfusion. Hypoxic preconditioning improved neurologic function and decreased infarct volume in WT or HDC-KO mice treated with histamine, but not in HDC-KO or WT mice treated with α-fluoromethylhistidine (α-FMH, an inhibitor of HDC). Laser-Doppler flowmetry analysis showed that hypoxic preconditioning ameliorated cerebral blood flow (CBF) in the periphery of the MCA territory during ischemia in WT mice but not in HDC-KO mice. Histamine decreased in the cortex of WT mice after 2, 3, and 4 hours of hypoxia, and HDC activity increased after 3 hours of hypoxia. Vascular endothelial growth factor (VEGF) mRNA and protein expressions showed a greater increase after hypoxia than those in HDC-KO or α-FMH-treated WT mice. In addition, the VEGF receptor-2 antagonist SU1498 prevented the protective effect of hypoxic preconditioning in infarct volume and reversed increased peripheral CBF in WT mice. Therefore, endogenous histamine is an essential mediator of hypoxic preconditioning. It may function by enhancing hypoxia-induced VEGF expression.


Asunto(s)
Histamina/fisiología , Hipoxia Encefálica/complicaciones , Accidente Cerebrovascular/etiología , Animales , Western Blotting , Química Encefálica/fisiología , Circulación Cerebrovascular/fisiología , Cromatografía Líquida de Alta Presión , Cinamatos/farmacología , Histamina/metabolismo , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Histidina Descarboxilasa/fisiología , Hipoxia Encefálica/fisiopatología , Infarto de la Arteria Cerebral Media/patología , Ataque Isquémico Transitorio/genética , Ataque Isquémico Transitorio/fisiopatología , Precondicionamiento Isquémico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Accidente Cerebrovascular/fisiopatología , Factor A de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...