Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202400651, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705845

RESUMEN

PEMWE is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic OER and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. The 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr-1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.

2.
Mol Cell Probes ; 30(2): 100-5, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26902991

RESUMEN

Airway inflammation is a central component of the manifestation of asthma but is relatively inaccessible to study. Current imaging techniques such as X-ray CT, MRI, and PET, have advanced noninvasive research on pulmonary diseases. However, these techniques mainly facilitate the anatomical or structural assessment of the diseased lung and/or typically use radioactive agents. In vivo fluorescence imaging is a novel method for noninvasive, real-time, and specific monitoring of lung airway inflammation, which is particularly important to gain a further understanding asthma. Compared to conventional techniques, fluorescent imaging has the advantages of rapid feedback, as well as high sensitivity and resolution. Recently, there has been an increase in the identification of biomarkers, including matrix metalloproteinases, cathepsins, selectins, folate receptor-beta, nanoparticles, as well as sialic acid-binding immunoglobulin-like lectin-F to assess the level of airway inflammation in asthma. Recent advances in our understanding of these biomarkers as molecular probes for in vivo imaging are discussed in this review.


Asunto(s)
Asma/diagnóstico por imagen , Biomarcadores/metabolismo , Imagen Óptica/métodos , Asma/metabolismo , Bronquios/diagnóstico por imagen , Bronquios/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA