RESUMEN
In perovskite solar cells, passivating the surface or interface that contains a high concentration of defects, specifically deep-level defects, is one of the most important topics to substantially enhance the power conversion efficiency and stability of the devices. Long-chain alkylammonium bromides have been widely and commonly adapted for passivation treatment. However, the mechanism behind is still not well explored as the formation route and the exact structure of these alkylammonium bromide-based low-dimensional perovskites are unclear. Herein, we investigate the physical and chemical properties of an n-hexylammonium bromide (HABr)-based low-dimensional perovskite including both thin films and single crystals. First of all, the HA2PbBr4 perovskite film and aged single crystal demonstrate different X-ray diffraction patterns from those of the fresh as-prepared single crystal. We found that the fresh HA2PbBr4 single crystal exhibits a metastable phase as its structure changes with aging due to the relaxation of crystal lattice strains, whereas the HA2PbBr4 perovskite film is pretty stable as the aged single crystal. Upon reacting with FAPbI3, HABr can be intercalated into the FAPbI3 lattice to form a mixed-cation perovskite of HAFAPbI3Br, which is in a dynamic equilibrium of decomposition and formation. In contrast, the reaction of HABr with excess PbI2 forms a stable HA2PbI2Br2 perovskite. Based on such findings, we rationally develop a HA2PbI2Br2-passivated FACs-based perovskite by reacting HABr with excess PbI2, the photovoltaics based on which are more stable and efficient than those passivated by the HAFAPbI3Br perovskite. Our discovery paves way for a more in-depth study of bromide-containing low-dimensional perovskites and their optoelectronic applications.
RESUMEN
Although pure formamidinium iodide perovskite (FAPbI3) possesses an optimal gap for photovoltaics, their poor phase stability limits the long-term operational stability of the devices. A promising approach to enhance their phase stability is to incorporate cesium into FAPbI3. However, state-of-the-art formamidinium-cesium (FA-Cs) iodide perovskites demonstrate much worse efficiency compared with FAPbI3, limited by the different crystallization dynamics of formamidinium and cesium, which result in poor composition homogeneity and high trap densities. We develop a novel strategy of crystallization decoupling processes of formamidinium and cesium via a sequential cesium incorporation approach. As such, we obtain highly reproducible, highly efficient and stable solar cells based on FA1 - x Cs x PbI3 (x = 0.05-0.16) films with uniform composition distribution in the nanoscale and low defect densities. We also revealed a new stabilization mechanism for Cs doping to stabilize FAPbI3, i.e. the incorporation of Cs into FAPbI3 significantly reduces the electron-phonon coupling strength to suppress ionic migration, thereby improving the stability of FA-Cs-based devices.
RESUMEN
An estuary plays an important role in material and energy exchange between the land and sea, where complex physical, chemical, and biological processes occur. Here, we investigated the assembly processes of free-living (FL) and particle-associated (PA) bacterial communities in two seawater layers at five stations in the Yangtze River Estuary (YRE) by using 16S rRNA sequencing methods. The results indicated that Proteobacteria was the most abundant phylum in the YRE. The α-diversity of PA community was significantly higher than FL community, and analysis of similarity showed significantly different (Global R = 0.2809, p < 0.005). RDA revealed that phosphate (PO4 3- ) was significantly correlated with PA bacterial community abundance (p < 0.05). An ecological null model showed that both PA and FL bacterial communities were mainly influenced by stochastic processes (PA: 100%, FL: 70%), which PA attached to nutrient particles and are less affected by environmental filtration. Dispersal limitation (50%) was the main assembly process of the PA community, while homogeneous selection (30%) and drift (30%) were important processes in the FL community assembly. The available substrate for colonization limits the transformation from FL to PA bacteria. This study would improve our understanding of FL and PA bacterial community structure and factors affecting assembly process in estuarine environments.
Asunto(s)
Estuarios , Ríos , Ríos/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Procesos Estocásticos , ChinaRESUMEN
A strain was isolated from an activated sludge system and identified as Halomonas piezotolerans HN2 in this study, which is the first strain in H. piezotolerans with the capability of heterotrophic nitrification and aerobic denitrification. Strain HN2 showed the maximum nitrogen removal rate of 9.10 mg/L/h by utilizing ammonium at the salinity of 3.0%. Under saline environment, HN2 could remove nitrogen efficiently in neutral and slightly alkaline environments, with the carbon sources of sodium succinate and sodium citrate and the C/N ratio of 15-20, and the maximum removal efficiencies of ammonium, nitrite, and nitrate were 100%, 96.35%, and 99.7%, respectively. The genomic information revealed the presence of amoA, napA, and nosZ genes in strain HN2, and the target bands of nirS were obtained via a polymerase chain reaction. Therefore, we inferred that ammonium was mainly utilized for the growth of strain HN2 through assimilation, and another part of the initial ammonium was converted into nitrate through nitrification, and then into gaseous nitrogen through denitrification. This report indicated the potential application of strain HN2 and other nitrifying and denitrifying Halomonas strains in the removal of nitrogen pollution in marine-related environments and also implies the important role of Halomonas in the nitrogen cycle process of the ocean.
Asunto(s)
Compuestos de Amonio , Halomonas , Aerobiosis , Desnitrificación , Halomonas/genética , Procesos Heterotróficos , Nitrificación , Nitritos , NitrógenoRESUMEN
Metal halide perovskite solar cells (PSCs) have attracted enormous attention as one of the most promising candidates for next-generation photovoltaics in the past few years. During the development of PSCs, various chemicals have been added to improve film quality and device performance. However, there are still debates about whether these chemicals are additives as removed from the final film or dopants incorporated into the crystal lattice. It is important to clarify whether these added chemicals are additives or dopants when designed for high-quality perovskite films' fabrications. Herein, we summarized several commonly used chemicals for hybrid and all-inorganic perovskites, such as MACl, DMAI, MAAc, and alkali metal cations. The underlying mechanism and their roles during the formation of perovskite films were discussed. In the end, we proposed some conclusive important factors to clarify additives and dopants, which would be helpful for the further chemical design for improving high-performance perovskite devices.
RESUMEN
The fishery and mariculture industry contributes to social food supply and offers high-quality protein to humans. However, mariculture is recently regarded as an important source of marine microplastic pollution, which might even pose a threat to human health. Here we investigated a shrimp-culturing farm for 9 months in Longjiao Bay, a typical mariculture area in southeast China, to study the occurrence and seasonal variations of microplastics in the mariculture water. Results showed that microplastics were widely present (250-5150 particles/m3, mean 1594 particles/m3) in the water of culture ponds. Granules (41.36%) and fibers (34.93%) were the main components of microplastics and white (45.42%) is the dominant color, followed by yellow (32.13%) and black (19.55%). Most of microplastics had a particle size between 0.30 mm and 5.00 mm (92.03%). The proportions of PE (34.40%) and PET (30.18%) accounted for more than 60% of detected microplastics. The abundance of microplastics in mariculture water had a potential positive correlation with local seafood yield and a negative correlation with land areas. This study suggested that further research is needed to figure out the impact of the high levels of microplastic abundance in mariculture environments on organisms, especially cultured ones.
Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Bahías , China , Monitoreo del Ambiente , Actividades Humanas , Humanos , Microplásticos , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
The stability of the perovskite/electron transport layer (ETL) interface is critical for perovskite solar cells due to the presence of ultraviolet (UV) light in the solar spectrum. Herein, we have studied the decomposition process and performance evolution of the perovskite layer in contact with different ETLs under strong ultraviolet irradiation. The normally used SnO2 layer has lower photocatalytic activity in comparison with the TiO2 layer, but the perovskite/SnO2 interface is still severely decomposed along with the formation of hole structures. Such UV light-induced decomposition, on the one hand, leads to the decomposition of the perovskite phase into PbI2 and more seriously, the formed hole structure significantly limits the carrier injection at the interface owing to the separation of the perovskite active layer from ETLs. Under the same conditions, the perovskite/PCBM interface is very stable and maintains a highly efficient carrier injection. There is no significant efficiency degradation of the encapsulated PCBM-based devices measured outdoors for about three months.
RESUMEN
Bacterioplankton play a key role in the global cycling of elements. To characterize the effects of hypoxia on bacterioplankton, bacterial community structure and function were investigated in the Changjiang Estuary. Water samples were collected from three layers (surface, middle, and bottom) at ten sampling sites in the Changjiang Estuary hypoxic and non-hypoxic zones. The community structure was analyzed using high-throughput sequencing of 16S rDNA genes, and the predictive metagenomic approach was used to investigate the functions of the bacterial community. Co-occurrence networks are constructed to investigate the relationship between different bacterioplankton. The results showed that community composition in hypoxic and non-hypoxic zones were markedly different. The diversity and richness of bacterial communities in the bottom layer (hypoxic zone) were remarkably higher than that of the surface layer (non-hypoxic). In the non-hypoxic zone, it was found that Proteobacteria, Bacteroidetes, and Flavobacteriia were the dominant groups while Alphaproteobacteria, SAR406 and Deltaproteobacteria were the dominant groups in the hypoxic zone. From the RDA analysis, it was shown that dissolved oxygen (DO) explained most of the bacterial community variation in the redundancy analysis targeting only hypoxia zones, whereas nutrients and salinity explained most of the variation across all samples in the Changjiang Estuary. To understand the genes involved in nitrogen metabolism, an analysis of the oxidation state of nitrogen was performed. The results showed that the bacterial community in the surface layer (non-hypoxic) had more genes involved in dissimilatory nitrate reduction, assimilatory nitrate reduction, denitrification, and anammox, while that in the middle and bottom layers (hypoxic zone) had more abundant genes associated with nitrogen fixation and nitrification. Co-occurrence networks revealed that microbial assemblages in the middle and bottom layers shared more niche spaces than in the surface layer (non-hypoxic zone). The environmental heterogeneity in the hypoxic and non-hypoxic zones might be important environmental factors that determine the bacterial composition in these two zones.
Asunto(s)
Bacterias , ADN Bacteriano/genética , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , Microbiología del Agua , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , China , EstuariosRESUMEN
An easy and scalable methylamine (MA) gas healing method was realized for inorganic cesium-based perovskite (CsPbX3 ) layers by incorporating a certain amount of MAX (X=I or Br) initiators into the raw film. It was found that the excess MAX accelerated the absorption of the MA gas into the CsPbX3 film and quickly turned it into a liquid intermediate phase. Through the healing process, a highly uniform and highly crystalline CsPbX3 film with enhanced photovoltaic performance was obtained. Moreover, the chemical interactions between a series of halides and MA gas molecules were studied, and the results could offer guidance in further optimizations of the healing strategy.
RESUMEN
Hanks-type kinases encoding genes are present in most cyanobacterial genomes. Despite their widespread pattern of conservation, little is known so far about their role because their substrates and the conditions triggering their activation are poorly known. Here we report that under diazotrophic conditions, normal heterocyst differentiation and growth of the filamentous cyanobacterium Nostoc PCC 7120 require the presence of the Pkn22 kinase, which is induced under combined nitrogen starvation conditions. By analyzing the phenotype of pkn22 mutant overexpressing genes belonging to the regulatory cascade initiating the development program, an epistatic relationship was found to exist between this kinase and the master regulator of differentiation, HetR. The results obtained using a bacterial two hybrid approach indicated that Pkn22 and HetR interact, and the use of a genetic screen inducing the loss of this interaction showed that residues of HetR which are essential for this interaction to occur are also crucial to HetR activity both in vitro and in vivo. Mass spectrometry showed that HetR co-produced with the Pkn22 kinase in Escherichia coli is phosphorylated on Serine 130 residue. Phosphoablative substitution of this residue impaired the ability of the strain to undergo cell differentiation, while its phosphomimetic substitution increased the number of heterocysts formed. The Serine 130 residue is part of a highly conserved sequence in filamentous cyanobacterial strains differentiating heterocysts. Heterologous complementation assays showed that the presence of this domain is necessary for heterocyst induction. We propose that the phosphorylation of HetR might have been acquired to control heterocyst differentiation.
RESUMEN
To investigate changes in transcript and relative protein levels in response to salicylic acid regulation of the thermotolerance in U. prolifera, complementary transcriptome and proteome analyses were performed with U. prolifera grown at 35 °C (UpHT) and with the addition of SA at high temperature (UpSHT). At mRNA level,12,296 differentially expressed genes (DEGs) were obtained from the comparison of UpSHT with UpHT. iTRAQ-labeling proteome analysis showed that a total of 4,449 proteins were identified and reliably quantified. At mRNA level, the up-regulated genes involved in antioxidant activity were thioredoxin,peroxiredoxin,FeSOD, glutathione peroxidase, partion catalase and MnSOD. The down-regulated genes were ascorbate peroxidase, glutathione S-transferase, catalase and MnSOD. In addition, the DEGs involved in plant signal transduction pathway (such as auxin response factors, BRI1 and JAZ) were down-regulated. At protein level, the up-regulated proteins involved in carbon fixation and the down-regulated protein mainly were polyubiquitin, ascorbate peroxidase. The expression of Ca2+-binding protein, heat shock protein and photosynthesis-related proteins, EDS1 were also significantly regulated both at mRNA and protein level. The results indicated that SA alleviated the high-temperature stimulus through partion antioxidant related proteins up-regulated, JA signal pathway enchanced, Ca2+-binding proteins, photosynthesis-related proteins significantly changed, antioxidant enzyme activities increased and photosynthesis index changed.