Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Dent J ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38991877

RESUMEN

PURPOSE: To investigate whether Dicliptera chinensis polysaccharide (DCP) can alleviate radiation-induced fibrosis of masseter and head and neck skin. METHODS: SD rats were divided into the control, the irradiation (IR), the IR + low dose DCP (200 mg/kg), and the IR + high dose DCP (400 mg/kg) groups. The head and neck of rats in the last 3 groups received a single dose of 18 Gy X-ray. At 1st, 2nd, 4th week (w) after radiation, haematoxylin and eosin staining were performed on masseter and skin to observe the histopathological changes; immunohistochemistry staining was performed to observe the pathological changes of the skin; Masson staining was performed on masseter and skin to observe the collagen deposition; western blot analysis was used on masseter to calculate the relative transforming growth factor ß1 (TGF-ß1), connective tissue growth factor (CTGF) expressions; ELISA was used to detect the contents of TGF-ß1 and CTGF in skin and the contents of type I and type III collagens in masseter and skin. RESULTS: In terms of skin, compared to the IR group, the IR + high-dose DCP group exhibited relatively smaller changes in skin structure, lower levels of TGF-ß1 and CTGF; thinner skin thickness was observed at the 4th w after radiation; and the positive rates of collagen fibre and the optical densities of type I and type III collagens were lower at the 2nd and 4th w. For the masseter, compared to the IR group, the morphological changes were improved and the expression levels of TGF-ß1 and CTGF proteins decreased in the 2 DCP dose groups at 2nd and 4th w. CONCLUSION: DCP can reduce the formation and accumulation of type I and type III collagens after IR and ameliorate radiation-induced fibrosis of masseter and skin by down-regulating the expressions of TGF-ß1 and CTGF.

2.
Heliyon ; 10(10): e31005, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38799761

RESUMEN

Objective: Radiotherapy for head and neck can damage the salivary gland cells, which can easily result in xerostomia. No effective treatment for radiation-induced salivary gland dysfunction currently exists. Thus, we aimed to study the protective effect of Dicliptera chinensis polysaccharides (DCP) on the prevention of submandibular gland (SMG) cell damage caused by radiotherapy in Sprague-Dawley rats. Design: Mechanical enzyme digestion was used to extract primary rat SMG cells. A radiation injury model was established by treating these cells with a dose of 8 Gy, followed by intervention using different DCP concentrations. The cell counting kit 8 assay was used to determine the inhibition rate of SMG cells in each group. The rates of apoptosis and cell cycle progression were detected using flow cytometry. Expression of the Mre11/Rad50/Nbs1 complex (MRN) was detected using western blotting. Results: DCP increased the proliferation of SMG cells after irradiation, and cell growth activity positively correlated with polysaccharide concentration. Flow cytometry analysis of SMG cell apoptosis revealed that DCP markedly reduced the total apoptosis rate after irradiation, especially the early apoptosis rate. Cell cycle results suggested that DCP reduced the number of cells in the S and G2 phases after irradiation and alleviated the S and G2 blocks. Western blot results indicated that the expression of Mre11, Rad50, and Nbs1 decreased in the radiation-injured group, whereas their expression increased after DCP treatment. Conclusions: DCP can protect the rat SMG cells after radiation and be used as a protective agent against salivary gland cell damage caused by radiotherapy.

3.
Sci Rep ; 14(1): 6270, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491127

RESUMEN

ALYREF is considered as a specific mRNA m5C-binding protein which recognizes m5C sites in RNA and facilitates the export of RNA from the nucleus to the cytoplasm. Expressed in various tissues and highly involved in the transcriptional regulation, ALYREF has the potential to become a novel diagnostic marker and therapeutic target for cancer patients. However, few studies focused on its function during carcinogenesis and progress. In order to explore the role of ALYREF on tumorigenesis, TCGA and GTEx databases were used to investigate the relationship of ALYREF to pan-cancer. We found that ALYREF was highly expressed in majority of cancer types and that elevated expression level was positively associated with poor prognosis in many cancers. GO and KEGG analysis showed that ALYREF to be essential in regulating the cell cycle and gene mismatch repair in tumor progression. The correlation analysis of tumor heterogeneity indicated that ALYREF could be specially correlated to the tumor stemness in stomach adenocarcinoma (STAD). Furthermore, we investigate the potential function of ALYREF on gastric carcinogenesis. Prognostic analysis of different molecular subtypes of gastric cancer (GC) unfolded that high ALYREF expression leads to poor prognosis in certain subtypes of GC. Finally, enrichment analysis revealed that ALYREF-related genes possess the function of regulating cell cycle and apoptosis that cause further influences in GC tumor progression. For further verification, we knocked down the expression of ALYREF by siRNA in GC cell line AGS. Knockdown of ALYREF distinctly contributed to inhibition of GC cell proliferation. Moreover, it is observed that knocked-down of ALYREF induced AGS cells arrested in G1 phase and increased cell apoptosis. Our findings highlighted the essential function of ALYREF in tumorigenesis and revealed the specific contribution of ALYREF to gastric carcinogenesis through pan-cancer analysis and biological experiments.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Pronóstico , Biomarcadores de Tumor/genética , ARN Interferente Pequeño , Carcinogénesis/genética , Línea Celular Tumoral , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ARN
4.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 110-118, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372104

RESUMEN

The salivary gland (SGS) is a kind of organ vulnerable to ionizing radiation. Radiotherapy is an important treatment for head and neck tumors, but in the process of radiotherapy, tumor cells will be injured by radiation to a certain extent. Infrared-induced DNA double-strand break (IR-DSBs) is one of the most serious DNA damage. DNA repair proteins such as Nymegan rupture syndrome protein 1 (NBS1) play a key role in the identification and repair of DNA damage. but the interaction between SSB1 and NBS1 has not been elucidated. In this study, we irradiated rat submandibular gland (SMG) cells, which were either infected with a rAdE5-SSB1-1p2-shRNA recombinant adenovirus to silence SSB or a control virus, to explore the effect of IR on the expression NBS1 in the absence of SSB. Our results showed that the SSB1 mRNA transcripts and protein expression of SSB1 and NBS1 initially increased and decreased later with increased doses. The relative expression reached the highest levels when the SMG cells were irradiated with 2Gy of IR. Silencing the SSB1 gene suppressed the expression of both SSB1 and NBS1 regardless of irradiation. The expression of NBS1 decreased when the SSB1 gene was silenced. We concluded that IR affected the expression of both SSB1 and NBS1 and there is a synergistic effect on IR-induced NBS1 suppression and DSBs repair in SMG cells. These observations shed light on further investigation and elucidation of IR-caused DNA repair mechanisms.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Nucleares , Glándula Submandibular , Animales , Ratas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Glándula Submandibular/metabolismo
5.
Bioresour Technol ; 381: 129123, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37146694

RESUMEN

Two-phase anaerobic digestion (AD) is a promising technology, but its performance is sensitive to methanogen. In this study, the effect of cobalt (Co) on two-phase AD was investigated and the enhanced mechanism was revealed. Though no obvious effect of Co2+ was observed in acidogenic phase, the activity of methanogens was significantly affected by Co2+ with an optimal Co2+ concentration of 2.0 mg/L. Ethylenediamine-N'-disuccinic acid (EDDS) was the most effective for improving Co bioavailability and increasing methane production. The role of Co-EDDS in improving methanogenic phase was also verified by operating three reactors for two months. The Co-EDDS supplement increased the level of Vitamin B12 (VB12) and coenzyme F420, and enriched Methanofollis and Methanosarcina, thereby successfully improving methane production and accelerating reactor recovery from ammonium and acid wastewater treatment. This study provides a promising approach to improve the efficiency and stability of anaerobic digester.


Asunto(s)
Reactores Biológicos , Cobalto , Anaerobiosis , Metano , Methanosarcina
6.
Water Res ; 225: 119112, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36166999

RESUMEN

A single-stage intermittent aeration microaerobic reactor (IAMR) has been developed for the cost-effective nitrogen removal from piggery wastewater with a low ratio of chemical oxygen demand (COD) to total nitrogen (TN). In this study, a quantified nitrogen metabolic network was constructed based on the metagenomics, reaction kinetics and mathematical model to provide a revealing insight into the nitrogen removal mechanism in the IAMR. Metagenomics revealed that a complex nitrogen metabolic network, including aerobic ammonia and nitrite oxidation, anammox, denitrification via nitrate and nitrite, and nitrate respiration, existed in the IAMR. A novel method for solving kinetic parameters with high stability was developed based on a genetic algorithm. Use this method to calculate the kinetics of various reactions involved in nitrogen metabolism. Kinetics revealed that simultaneous partial nitritation-anammox (PN/A) and partial denitrification-anammox (PDN/A) were the dominant approaches to nitrogen removal in the IAMR. Finally, a kinetics-based model was proposed for quantitatively describing the nitrogen metabolic network under the limitation of COD. 58% ∼ 67% of nitrogen was removed via the anammox-based processes (PN/A and PDN/A), but only 7% ∼ 12% and 1% ∼ 2% of nitrogen were removed via heterotrophic denitrification of nitrite and nitrate, respectively. The half-inhibition constant of dissolved oxygen (DO) on anammox was simulated as 0.37 ∼ 0.60 mg L-1, filling the gap in quantifying DO inhibition on anammox. High-frequency intermittent aeration was identified as the crucial measure to suppress nitrite-oxidizing bacteria, although it has a high affinity for DO and NO2--N. In continuous aeration mode, the simulated NO3--N in the IAMR would rise by 39.6%. The research provides a novel insight into the nitrogen removal mechanism in single-stage microaerobic systems and provides a reliable approach to practicing PN/A and PDN/A for cost-effective nitrogen removal.


Asunto(s)
Nitrógeno , Aguas Residuales , Desnitrificación , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos/microbiología , Amoníaco , Aguas del Alcantarillado , Cinética , Nitritos , Nitratos , Dióxido de Nitrógeno , Oxidación-Reducción , Modelos Teóricos , Redes y Vías Metabólicas , Oxígeno
7.
Artículo en Inglés | MEDLINE | ID: mdl-35576507

RESUMEN

Noble metal nanozymes have shown great promise in biomedicine; however, developing novel and high-performance noble metal nanozymes is still highly pressing and challenging. Herein, we, for the first time, prepared two-dimensional (2D) Pd@Ir bimetal nanosheets (NSs) with well-defined size and composition by a facile seed-mediated growth strategy. Enzyme-mimicked investigations find that the Pd@Ir NSs possess oxidase (OXD)-, peroxidase (POD)-, and catalase (CAT)-like multienzyme-mimetic activities. Especially, they exhibited much higher OXD- and POD-like activities than individual Pd NSs and Ir nanoparticles (NPs). The density functional theory (DFT) calculations reveal that the adsorption energy of O2 on Pd@Ir NSs is lower than that on the pure Pd NSs, which is more favorable for the conversion of O2 molecules from the triplet state (3O2) into the singlet state (1O2). Finally, based on the outstanding nanozyme activities to yield highly active singlet oxygen (1O2) and hydroxyl radicals (•OH) as well as excellent biosafety, the as-prepared Pd@Ir NSs were applied to treat bacteria-infected wounds, and satisfactory therapeutic outcomes were achieved. We believe that the highly efficient 2D Pd@Ir nanozyme will be an effective therapeutic reagent for various biomedical applications.

8.
Bioresour Technol ; 345: 126494, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34883191

RESUMEN

A novel combined sequencing batch reactor (SBR) - up-flow microaerobic sludge reactor (UMSR) process was developed to treat manure-free piggery wastewater characterized by low COD/TN ratio and high NH4+-N. The front-end SBR was designed to get an effluent with COD/TN ≤ 1 by removing COD, allowing the back-end UMSR to practice anammox for the simultaneous removal of TN and NH4+-N. Fed with the raw piggery wastewater, the combined SBR-UMSR process was started up at 27℃ with a reflux ratio of 15:1 in the UMSR. After 230-days running, the removal of COD, TN, and NH4+-N in the combined SBR-UMSR process reached 78.41%,85.05%, and 92.21%, respectively. 50.22% of COD in the wastewater was removed in the SBR, while 87.11% of NH4+-N and 79.69% of TN were removed in the UMSR. Stoichiometry and bacterial function analysis revealed that the partial nitrification - anammox process was the dominant nitrogen removal approach in the UMSR.


Asunto(s)
Nitrógeno , Aguas Residuales , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Desnitrificación , Estiércol , Nitrógeno/análisis , Eliminación de Residuos Líquidos
9.
Sci Total Environ ; 800: 149413, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34384968

RESUMEN

N-acyl-homoserine lactones (AHLs)-mediated quorum sensing (QS) has been reported as the inducers of microbial social behaviors in anaerobic digestion (AD) processes. However, it is not well understood that how to intentionally change the secretion of AHLs by conventional engineering control such as the regulation of alkalinity. The present research investigated the effect of endogenous AHLs-mediated QS on the microbial social behaviors in an upflow anaerobic sludge bed (UASB) reactor with the influent alkalinity decreased from 2800 mg/L to 700 mg/L by stages. The results showed that the alkalinity of 1800-2200 mg/L was more favorable for the AD in the UASB, with an excellent specific methanogenic activity (SMA) and better microbial aggregation statuses. The alkalinity out of the favorable alkalinity range would decrease the SMA with the accumulation of VFAs in the reactor. It was found that signal molecule C4-HSL was always the dominant AHL in the UASB along with the decrease of influent alkalinity, while 3-oxo-C6-HSL, 3-oxo-C12-HSL and C14-HSL were remarkably improved only within the favorable range of alkalinity. Pearson correlation concluded that the dominant signal molecule C4-HSL was the specific AHL in enhancing the synthesis of extracellular polysaccharide and the metabolism of acidogens. The co-occurrence network revealed that Mesotoga, Sulfurospirillum and Methanoregula were the key hubs in the microbial interaction network, and the AHLs-mediated QS indirectly facilitated the methanogenic metabolism. The present work provided a revealing insight into the effect of AHLs-mediated QS on the microbial social behaviors in AD process with the regulation of alkalinity.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Bacterias , Aguas del Alcantarillado , Conducta Social
10.
Bioresour Technol ; 337: 125360, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34116282

RESUMEN

Performance of anaerobic sludge and microbial social behaviors in an expanded granular sludge bed (EGSB) were evaluated by increasing reflux ratio from 50% to 500% stage by stage, with a constant influent chemical oxygen demand (COD) of 5500 mg/L at hydraulic retention time 12 h. The results indicated that the reflux ratio of 100% - 200% was more favorable for the EGSB with a methane production of 2.4 m3/m3·d. It was found that acyl-homoserine lactones (AHLs)-mediated quorum sensing (QS) could balance various microbial populations in the anaerobic digestion process. C4-HSL and C8-HSL were identified as the specific AHLs in enhancing granulation of anaerobic sludge by stimulating protein secretion into extracellular polymeric substances (EPS). 3-oxo-C6-HSL and 3-oxo-C14-HSL were verified for the enhancement of methanogenesis. The present study showed a novel perspective on the performance of EGSB with reflux ratios based on the AHLs-mediated QS.


Asunto(s)
Acil-Butirolactonas , Aguas del Alcantarillado , Anaerobiosis , Percepción de Quorum , Conducta Social
11.
Sci Total Environ ; 774: 144925, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33610988

RESUMEN

Characterized by high ammonium (NH4+ - N) and low ratio of chemical oxygen demand (COD) to total nitrogen (COD/TN), discharge of piggery wastewater has been identified as a primary pollution source resulting in water eutrophication. An improved microaerobic reactor, internal aerating microaerobic reactor (IAMR), was constructed to treat manure-free piggery wastewater without effluent recycle at dissolved oxygen of 0.3 mg/L and 32 °C. A removal rate of COD, NH4+ - N and TN averaged 77.9%, 94.6% and 82.6% was obtained in the reactor, with the concentration of 258.5, 235.5 and 335.2 mg/L in influent, respectively. 16S rDNA amplicon sequencing, carbon and nitrogen mass balance and stoichiometry indicated that heterotrophic nitrification-anammox was the dominant approach to nitrogen removal. Microbiome phenotypes showed that aerobic bacteria were the dominant microorganisms, and the microbiome oxidative stress tolerance was intensified along with the continuous operation of the IAMR, resulting in the survival of various facultative and anaerobic bacteria for nutrients removal. With the good nutrients removal, less energy consumption, and high tolerance to influent fluctuation, the improved IAMR was confirmed as a promising process for treating wastewater with high NH4+ - N and low COD/TN.


Asunto(s)
Nitrógeno , Aguas Residuales , Reactores Biológicos , Desnitrificación , Nitrógeno/análisis , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...