Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Lab Chip ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952234

RESUMEN

Timely and accurate diagnosis is critical for effective healthcare, yet nearly half the global population lacks access to basic diagnostics. Point-of-care (POC) testing offers partial solutions by enabling low-cost, rapid diagnosis at the patient's location. At-home POC devices have the potential to advance preventive care and early disease detection. Nevertheless, effective sample preparation and detection methods are essential for accurate results. This review surveys recent advances in sample preparation and detection methods at POC. The goal is to provide an in-depth understanding of how these technologies can enhance at-home POC devices. Lateral flow assays, nucleic acid tests, and virus detection methods are at the forefront of POC diagnostic technology, offering rapid and sensitive tools for identifying and measuring pathogens, biomarkers, and viral infections. By illuminating cutting-edge research on assay development for POC diagnostics, this review aims to accelerate progress towards widely available, user-friendly, at-home health monitoring tools that empower individuals in personalized healthcare in the future.

2.
Bioengineering (Basel) ; 11(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927778

RESUMEN

The characterization of individual cells within heterogeneous populations (e.g., rare tumor cells in healthy blood cells) has a great impact on biomedical research. To investigate the properties of these specific cells, such as genetic biomarkers and/or phenotypic characteristics, methods are often developed for isolating rare cells among a large number of background cells before studying their genetic makeup and others. Prior to using real-world samples, these methods are often evaluated and validated by spiking cells of interest (e.g., tumor cells) into a sample matrix (e.g., healthy blood) as model samples. However, spiking tumor cells at extremely low concentrations is challenging in a standard laboratory setting. People often circumvent the problem by diluting a solution of high-concentration cells, but the concentration becomes inaccurate after series dilution due to the fact that a cell suspension solution can be inhomogeneous, especially when the cell concentration is very low. We report on an alternative method for low-cost, accurate, and reproducible low-concentration cell spiking without the use of external pumping systems. By inducing a capillary force from sudden pressure drops, a small portion of the cellular membrane was aspirated into the reservoir tip, allowing for non-destructive single-cell transfer. We investigated the surface membrane tensions induced by cellular aspiration and studied a range of tip/tumor cell diameter combinations, ensuring that our method does not affect cell viability. In addition, we performed single-cell capture and transfer control experiments using human acute lymphoblastic leukemia cells (CCRF-CEM) to develop calibrated data for the general production of low-concentration samples. Finally, we performed affinity-based tumor cell isolation using this method to generate accurate concentrations ranging from 1 to 15 cells/mL.

3.
Aerosol Sci Technol ; 58(3): 217-243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764553

RESUMEN

As SARS-CoV-2 swept across the globe, increased ventilation and implementation of air cleaning were emphasized by the US CDC and WHO as important strategies to reduce the risk of inhalation exposure to the virus. To assess whether higher ventilation and air cleaning rates lead to lower exposure risk to SARS-CoV-2, 1274 manuscripts published between April 2020 and September 2022 were screened using key words "airborne SARS-CoV-2 or "SARS-CoV-2 aerosol". Ninety-three studies involved air sampling at locations with known sources (hospitals and residences) were selected and associated data were compiled. Two metrics were used to assess exposure risk: SARS-CoV-2 concentration and SARS-CoV-2 detection rate in air samples. Locations were categorized by type (hospital or residence) and proximity to the sampling location housing the isolated/quarantined patient (primary or secondary). The results showed that hospital wards had lower airborne virus concentrations than residential isolation rooms. A negative correlation was found between airborne virus concentrations in primary-occupancy areas and air changes per hour (ACH). In hospital settings, sample positivity rates were significantly reduced in secondary-occupancy areas compared to primary-occupancy areas, but they were similar across sampling locations in residential settings. ACH and sample positivity rates were negatively correlated, though the effect was diminished when ACH values exceeded 8. While limitations associated with diverse sampling protocols exist, data considered by this meta-analysis support the notion that higher ACH may reduce exposure risks to the virus in ambient air.

4.
Sci Rep ; 14(1): 12374, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811642

RESUMEN

Circulating tumor cells (CTCs) have gathered attention as a biomarker for carcinomas. However, CTCs in sarcomas have received little attention. In this work, we investigated cell surface proteins and antibody combinations for immunofluorescence detection of sarcoma CTCs. A microfluidic device that combines filtration and immunoaffinity using gangliosides 2 and cell surface vimentin (CSV) antibodies was employed to capture CTCs. For CTC detection, antibodies against cytokeratins 7 and 8 (CK), pan-cytokeratin (panCK), or a combination of panCK and CSV were used. Thirty-nine blood samples were collected from 21 patients of various sarcoma subtypes. In the independent samples study, samples were subjected to one of three antibody combination choices. Significant difference in CTC enumeration was found between CK and panCK + CSV, and between panCK and panCK + CSV. Upon stratification of CK+ samples, those of metastatic disease had a higher CTC number than those of localized disease. In the paired samples study involving cytokeratin-positive sarcoma subtypes, using panCK antibody detected more CTCs than CK. Similarly, for osteosarcoma, using panCK + CSV combination resulted in a higher CTC count than panCK. This study emphasized deliberate selection of cell surface proteins for sarcoma CTC detection and subtype stratification for studying cancers as heterogeneous as sarcomas.


Asunto(s)
Biomarcadores de Tumor , Células Neoplásicas Circulantes , Sarcoma , Humanos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Sarcoma/patología , Sarcoma/sangre , Sarcoma/diagnóstico , Sarcoma/metabolismo , Biomarcadores de Tumor/sangre , Femenino , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Queratinas/inmunología , Queratinas/metabolismo , Persona de Mediana Edad , Adulto , Vimentina/metabolismo , Vimentina/inmunología , Anciano , Anticuerpos/inmunología , Línea Celular Tumoral
5.
Aerosol Sci Technol ; 57(11): 1142-1153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143528

RESUMEN

Airborne transmission of infectious (viable) SARS-CoV-2 is increasingly accepted as the primary manner by which the virus is spread from person to person. Risk of exposure to airborne virus is higher in enclosed and poorly ventilated spaces. We present a study focused on air sampling within residences occupied by individuals with COVID-19. Air samplers (BioSpot-VIVAS, VIVAS, and BC-251) were positioned in primary- and secondary-occupancy regions in seven homes. Swab samples were collected from high-touch surfaces. Isolation of SARS-CoV-2 was attempted for samples with virus detectable by RT-qPCR. Viable virus was quantified by plaque assay, and complete virus genome sequences were obtained for selected samples from each sampling day. SARS-CoV-2 was detected in 24 of 125 samples (19.2%) by RT-qPCR and isolated from 14 (11.2%) in cell cultures. It was detected in 80.9% (17/21) and cultured from 61.9% (13/21) of air samples collected using water condensation samplers, compared to swab samples which had a RT-qPCR detection rate of 10.5% (4/38) and virus isolation rate of 2.63% (1/38). No statistically significant differences existed in the likelihood of virus detection by RT-qPCR or amount of infectious virus in the air between areas of primary and secondary occupancy within residences. Our work provides information about the presence of SARS-CoV-2 in the air within homes of individuals with COVID-19. Information herein can help individuals make informed decisions about personal exposure risks when sharing indoor spaces with infected individuals isolating at home and further inform health departments and the public about SARS-CoV-2 exposure risks within residences.

6.
Lab Chip ; 23(19): 4157-4159, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37674417
7.
Anal Bioanal Chem ; 415(23): 5605-5617, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37470813

RESUMEN

Mayaro virus (MAYV) is an emerging mosquito-borne alphavirus that causes clinical symptoms similar to those caused by Chikungunya virus (CHIKV), Dengue virus (DENV), and Zika virus (ZIKV). To differentiate MAYV from these viruses diagnostically, we have developed a portable device that integrates sample preparation with real-time, reverse-transcription, loop-mediated isothermal amplification (rRT-LAMP). First, we designed a rRT-LAMP assay targeting MAYV's non-structural protein (NS1) gene and determined the limit of detection of at least 10 viral genome equivalents per reaction. The assay was specific for MAYV, without cross-reactions with CHIKV, DENV, or ZIKV. The rRT-LAMP assay was integrated with a sample preparation device (SPD) wherein virus lysis and RNA enrichment/purification were carried out on the spot, without requiring pipetting, while subsequent real-time amplification device (RAD) enables virus detection at the point of care (POC). The functions of our platform were demonstrated using purified MAYV RNA or blood samples containing viable viruses. We have used the devices for detection of MAYV in as short as 13 min, with limit of detection to as low as 10 GEs/reaction.


Asunto(s)
Virus Chikungunya , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Infección por el Virus Zika/diagnóstico , Virus Zika/genética , Virus Chikungunya/genética , Técnicas de Amplificación de Ácido Nucleico , Genoma Viral , ARN Viral/genética
8.
Biosensors (Basel) ; 13(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37504105

RESUMEN

Liquid biopsy has progressed to its current use to diagnose and monitor cancer. Despite the recent advances in investigating cancer detection and diagnosis strategies, there is still a room for improvements in capturing CTCs. We developed an efficient CTC detection system by integrating gold nanoparticles with a microfluidic platform, which can achieve CTC capture within 120 min. Here, we report our development of a simple and effective way to isolate CTCs using antibodies attached on gold nanoparticles to the surface of a lateral filter array (LFA) microdevice. Our method was optimized using three pancreatic tumor cell lines, enabling the capture with high efficiency (90% ± 3.2%). The platform was further demonstrated for isolating CTCs from patients with metastatic pancreatic cancer. Our method and platform enables the production of functionalized, patterned surfaces that interact with tumor cells, enhancing the selective capture of CTCs for biological assays.


Asunto(s)
Nanopartículas del Metal , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica/métodos , Células Neoplásicas Circulantes/metabolismo , Oro , Línea Celular Tumoral
9.
Methods Mol Biol ; 2689: 71-93, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37430048

RESUMEN

Microfluidic platforms enable the enrichment and analysis of circulating tumor cells (CTCs), a potential biomarker for cancer diagnosis, prognosis, and theragnosis. Combined with immunocytochemistry/immunofluorescence (ICC/IF) assays for CTCs, microfluidics-enabled detection presents a unique opportunity to study tumor heterogeneity and predict treatment response, both of which can help cancer drug development. In this chapter, we detail the protocols and methods employed to fabricate and use a microfluidic device for the enrichment, detection, and analysis of single CTCs from the blood samples of sarcoma patients.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Microfluídica , Análisis de la Célula Individual , Desarrollo de Medicamentos , Técnica del Anticuerpo Fluorescente Directa
10.
Methods Mol Biol ; 2679: 1-13, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37300605

RESUMEN

Circulating tumor cells (CTCs) are an important liquid biopsy biomarker for next-generation cancer diagnosis and prognosis. However, their clinical usage is hindered by the rarity of CTCs in patient's peripheral blood. Microfluidics has shown unique advantages in CTC isolation and detection. We have developed lateral filter array microfluidic (LFAM) devices for highly efficient CTC isolation. In this chapter, we describe in detail the design and fabrication of the LFAM devices and their applications for CTC enumeration from clinical blood samples.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Enfermedades Neuromusculares , Humanos , Células Neoplásicas Circulantes/patología , Separación Celular , Microfluídica , Dispositivos Laboratorio en un Chip , Biopsia Líquida , Línea Celular Tumoral
11.
Hyg Environ Health Adv ; 7: 100061, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37305381

RESUMEN

This study aimed to provide environmental surveillance data for evaluating the risk of acquiring SARS-CoV-2 in public areas with high foot traffic in a university. Air and surface samples were collected at a university that had the second highest number of COVID-19 cases among public higher education institutions in the U.S. during Fall 2020. A total of 60 samples were collected in 16 sampling events performed during Fall 2020 and Spring 2021. Nearly 9800 students traversed the sites during the study period. SARS-CoV-2 was not detected in any air or surface samples. The university followed CDC guidance, including COVID-19 testing, case investigations, and contact tracing. Students, faculty, and staff were asked to maintain physical distancing and wear face coverings. Although COVID-19 cases were relatively high at the university, the possibility of acquiring SARS-CoV-2 infections at the sites tested was low.

12.
Sci Rep ; 13(1): 4245, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918634

RESUMEN

Escherichia coli (E. coli) cells are present in fecal materials that can be the main source for disease-causing agents in water. As a result, E. coli is recommended as a water quality indicator. We have developed an innovative platform to detect E. coli for monitoring water quality on-site by integrating paper-based sample preparation with nucleic acid isothermal amplification. The platform carries out bacterial lysis and DNA enrichment onto a paper pad through ball-based valves for fluid control, with no need of laboratory equipment, followed by loop-mediated isothermal amplification (LAMP) in a battery-operated coffee mug, and colorimetric detection. We have used the platform to detect E. coli in environmental water samples in about 1 h, with a limit of quantitation of 0.2 CFU/mL, and 3 copies per reaction. The platform was confirmed for detecting multiple E. coli strains, and for water samples of different salt concentrations. We validated the functions of the platform by analyzing recreational water samples collected near the Atlantic Ocean that contain different concentrations of salt and bacteria.


Asunto(s)
Escherichia coli , Técnicas de Amplificación de Ácido Nucleico , Escherichia coli/genética , Bacterias/genética , Océano Atlántico
13.
Can J Chem ; 100(7): 512-519, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36338875

RESUMEN

The analysis of circulating tumor cells (CTCs) is important for cancer diagnosis and prognosis. Microfluidics has been employed for CTC analysis due to its scaling advantages and high performance. However, pre-analytical methods for CTC sample preparation are often combined with microfluidic platforms because a large sample volume is required to detect extremely rare CTCs. Among pre-analytical methods, Ficoll-Paque™, OncoQuick™, and RosetteSep™ are commonly used to separate cells of interest. To compare their performance, we spiked L3.6pl pancreatic cancer cells into healthy blood samples and then employed each technique to prepare blood samples, followed by using a microfluidic platform to capture and detect L3.6pl cells. We found these three methods have similar performance, though the slight edge of RosetteSep™ over Ficoll-Paque™ is statistically significant. We also studied the effects of the tumor cell concentrations on the performance of the frequently used Ficoll-Paque™ method. Furthermore, we examined the repeatability and variability of each pre-analytical technique and the microfluidics-enabled detection. This study will provide researchers and clinicians with comparative data that can influence the choice of sample preparation method, help estimate CTC loss in each pre-analytical method, and correlate the results of clinical studies that employ different techniques.


L'analyse des cellules tumorales circulantes (CTC) est une pierre angulaire du diagnostic et du pronostic du cancer. On recourt à la microfluidique pour l'analyse des CTC en raison des avantages qu'elle offre pour la mise à l'échelle et de sa grande performance. Par ailleurs, les méthodes préanalytiques pour la préparation d'échantillons de CTC font souvent appel à des plateformes microfluidiques, car il faut un grand volume d'échantillon pour détecter des CTC extrêmement rares. Parmi les méthodes préanalytiques couramment utilisées pour séparer les cellules sanguines d'intérêt, notons Ficoll-PaqueMC, OncoQuickMC et RosetteSepMC. Afin de comparer les performances de ces méthodes, nous avons additionné de cellules de cancer du pancreas L3,6pl des échantillons de sang sains, puis nous avons utilisé les trois méthodes pour préparer les échantillons sanguins, que nous avons ensuite soumis à une plateforme microfluidique pour isoler et détecter les cellules L3,6pl. Nos résultats montrent que les performances de ces trois méthodes sont similaires, bien que le léger avantage de RosetteSepMC par rapport à Ficoll-PaqueMC soit statistiquement significatif. Nous avons également étudié les effets des concentrations de cellules tumorales sur la performance de la méthode Ficoll-PaqueMC, qui est la plus fréquemment utilisée. En outre, nous avons examiné la répétabilité et la variabilité de chaque méthode préanalytique et les caractéristiques de détection que permet d'obtenir la microfluidique. Cette étude fournit aux chercheurs et aux cliniciens des données comparatives qui peuvent influencer leur choix de la méthode de préparation des échantillons, et permet d'estimer la perte de CTC propre à chaque méthode préanalytique et de corréler les résultats des études cliniques qui utilisent différentes techniques. [Traduit par la Rédaction].

14.
J Aerosol Sci ; 165: 106038, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35774447

RESUMEN

The B.1.617.2 (Delta) variant of SARS-CoV-2 emerged in India in October of 2020 and spread widely to over 145 countries, comprising over 99% of genome sequence-confirmed virus in COVID-19 cases of the United States (US) by September 2021. The rise in COVID-19 cases due to the Delta variant coincided with a return to in-person school attendance, straining COVID-19 mitigation plans implemented by educational institutions. Some plans required sick students to self-isolate off-campus, resulting in an unintended consequence: exposure of co-inhabitants of dwellings used by the sick person during isolation. We assessed air and surface samples collected from the bedroom of a self-isolating university student with mild COVID-19 for the presence of SARS-CoV-2. That virus' RNA was detected by real-time reverse-transcription quantitative polymerase chain reaction (rRT-qPCR) in air samples from both an isolation bedroom and a distal, non-isolation room of the same dwelling. SARS-CoV-2 was detected and viable virus was isolated in cell cultures from aerosol samples as well as from the surface of a mobile phone. Genomic sequencing revealed that the virus was a Delta variant SARS-CoV-2 strain. Taken together, the results of this work confirm the presence of viable SARS-CoV-2 within a residential living space of a person with COVID-19 and show potential for transportation of virus-laden aerosols beyond a designated isolation suite to other areas of a single-family home.

15.
Biosensors (Basel) ; 12(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35448266

RESUMEN

While patients with resectable pancreatic ductal adenocarcinoma (PDAC) show improved survival compared to their non-resectable counterparts, survival remains low owing to occult metastatic disease and treatment resistance. Liquid biopsy based on circulating tumor cells (CTCs) and cell-free DNA (cfDNA) has been shown to predict recurrence and treatment resistance in various types of cancers, but their utility has not been fully demonstrated in resectable PDAC. We have simultaneously tracked three circulating biomarkers, including CTCs, cfDNA, and circulating tumor DNA (ctDNA), over a period of cancer treatment using a microfluidic device and droplet digital PCR (ddPCR). The microfluidic device is based on the combination of filtration and immunoaffinity mechanisms. We have measured CTCs, cfDNA, and ctDNA in a cohort of seven resectable PDAC patients undergoing neoadjuvant therapy followed by surgery, and each patient was followed up to 10 time points over a period of 4 months. CTCs were detectable in all patients (100%) at some point during treatment but were detectable in only three out of six patients (50%) prior to the start of treatment. Median cfDNA concentrations remained comparable to negative controls throughout treatment. ddPCR was able to find KRAS mutations in six of seven patients (86%); however, these mutations were present in only two of seven patients (29%) prior to treatment. Overall, the majority of circulating biomarkers (81% for CTCs and 91% for cfDNA/ctDNA) were detected after the start of neoadjuvant therapy but before surgery. This study suggests that a longitudinal study of circulating biomarkers throughout treatment provides more useful information than those single time-point tests for resectable PDAC patients.


Asunto(s)
Adenocarcinoma , Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Biomarcadores de Tumor , Humanos , Estudios Longitudinales , Neoplasias Pancreáticas , Pronóstico , Neoplasias Pancreáticas
16.
Aerosol Air Qual Res ; 22(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024044

RESUMEN

Since mask use and physical distancing are difficult to maintain when people dine indoors, restaurants are perceived as high risk for acquiring COVID-19. The air and environmental surfaces in two restaurants in a mid-scale city located in north central Florida that followed the Centers for Disease Control and Prevention (CDC) reopening guidance were sampled three times from July 2020 to February 2021. Sixteen air samples were collected for 2 hours using air samplers, and 20 surface samples by using moistened swabs. The samples were analyzed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for the presence of SARS-CoV-2 genomic RNA. A total of ~550 patrons dined in the restaurants during our samplings. SARS-CoV-2 genomic RNA was not detected in any of the air samples. One of the 20 surface samples (5%) was positive. That sample had been collected from a plastic tablecloth immediately after guests left the restaurant. Virus was not isolated in cell cultures inoculated with aliquots of the RT-PCR-positive sample. The likelihood that patrons and staff acquire SARS-CoV-2 infections may be low in restaurants in a mid-scale city that adopt CDC restaurant reopening guidelines, such as operation at 50% capacity so that tables can be spaced at least 6 feet apart, establishment of adequate mechanical ventilation, use of a face covering except while eating or drinking, and implementation of disinfection measures.

17.
J Aerosol Sci ; 159: 105870, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34483358

RESUMEN

Individuals with COVID-19 are advised to self-isolate at their residences unless they require hospitalization. Persons sharing a dwelling with someone who has COVID-19 have a substantial risk of being exposed to the virus. However, environmental monitoring for the detection of virus in such settings is limited. We present a pilot study on environmental sampling for SARS-CoV-2 virions in the residential rooms of two volunteers with COVID-19 who self-quarantined. Apart from standard surface swab sampling, based on availability, four air samplers positioned 0.3-2.2 m from the volunteers were used: a VIable Virus Aerosol Sampler (VIVAS), an inline air sampler that traps particles on polytetrafluoroethylene (PTFE) filters, a NIOSH 2-stage cyclone sampler (BC-251), and a Sioutas personal cascade impactor sampler (PCIS). The latter two selectively collect particles of specific size ranges. SARS-CoV-2 RNA was detected by real-time Reverse-Transcription quantitative Polymerase Chain Reaction (rRT-qPCR) analyses of particles in one air sample from the room of volunteer A and in various air and surface samples from that of volunteer B. The one positive sample collected by the NIOSH sampler from volunteer A's room had a quantitation cycle (Cq) of 38.21 for the N-gene, indicating a low amount of airborne virus [5.69E-02 SARS-CoV-2 genome equivalents (GE)/cm3 of air]. In contrast, air samples and surface samples collected off the mobile phone in volunteer B's room yielded Cq values ranging from 14.58 to 24.73 and 21.01 to 24.74, respectively, on the first day of sampling, indicating that this volunteer was actively shedding relatively high amounts of SARS-CoV-2 at that time. The SARS-CoV-2 GE/cm3 of air for the air samples collected by the PCIS was in the range 6.84E+04 to 3.04E+05 using the LED-N primer system, the highest being from the stage 4 filter, and similarly, ranged from 2.54E+03 to 1.68E+05 GE/cm3 in air collected by the NIOSH sampler. Attempts to isolate the virus in cell culture from the samples from volunteer B's room with the aforementioned Cq values were unsuccessful due to out-competition by a co-infecting Human adenovirus B3 (HAdVB3) that killed the Vero E6 cell cultures within 4 days of their inoculation, although Cq values of 34.56-37.32 were measured upon rRT-qPCR analyses of vRNA purified from the cell culture medium. The size distribution of SARS-CoV-2-laden aerosol particles collected from the air of volunteer B's room was >0.25 µm and >0.1 µm as recorded by the PCIS and the NIOSH sampler, respectively, suggesting a risk of aerosol transmission since these particles can remain suspended in air for an extended time and travel over long distances. The detection of virus in surface samples also underscores the potential for fomite transmission of SARS-CoV-2 in indoor settings.

18.
ACS Sens ; 6(11): 4176-4184, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34767357

RESUMEN

Early and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses at the point-of-care is crucial for reducing disease transmission during the current pandemic and future flu seasons. To prepare for potential cocirculation of these two viruses, we report a valve-enabled, paper-based sample preparation device integrated with isothermal amplification for their simultaneous detection. The device incorporates (1) virus lysis and RNA enrichment, enabled by ball-based valves for sequential delivery of reagents with no pipet requirement, (2) reverse transcription loop-mediated isothermal amplification, carried out in a coffee mug, and (3) colorimetric detection. We have used the device for simultaneously detecting inactivated SARS-CoV-2 and influenza A H1N1 viruses in 50 min, with limits of detection at 2 and 6 genome equivalents, respectively. The device was further demonstrated to detect both viruses in environmental samples.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto , ARN Viral/genética , SARS-CoV-2
19.
Oncologist ; 26(10): 825-e1674, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34101295

RESUMEN

LESSONS LEARNED: Preclinical studies have demonstrated that Src inhibition through dasatinib synergistically enhances the antitumor effects of oxaliplatin. In this phase II, single-arm study, FOLFOX with dasatinib in previously untreated patients with mPC only showed only modest clinical activity, with a progressive-free survival of 4 months and overall survival of 10.6 months. Continued investigation is ongoing to better understand the role of Src inhibition with concurrent 5-fluorouracil and oxaliplatin in a subset of exceptional responders. BACKGROUND: Src tyrosine kinase activity is overexpressed in many human cancers, including metastatic pancreatic cancer (mPC). Dasatinib is a potent inhibitor of Src family of tyrosine kinases. This study was designed to investigate whether dasatinib can synergistically enhance antitumor effects of FOLFOX regimen (FOLFOX-D). METHODS: In this single-arm, phase II study, previously untreated patients received dasatinib 150 mg oral daily on days 1-14, oxaliplatin 85 mg/m2 intravenous (IV) on day 1 every 14 days, leucovorin (LV) 400 mg/m2 IV on day 1 every 14 days, 5-fluorouracil (5-FU) bolus 400 mg/m2 on day 1 every 14 days, and 5-FU continuous infusion 2,400 mg/m2 on day 1 every 14 days. Primary endpoint was progression-free survival (PFS) with preplanned comparison to historical controls. RESULTS: Forty-four patients enrolled with an estimated median PFS of 4.0 (95% confidence interval [CI], 2.3-8.5) months and overall survival (OS) of 10.6 (95% CI, 6.9-12.7) months. Overall response rate (ORR) was 22.7% (n = 10): one patient (2.3%) with complete response (CR) and nine patients (20.5%) with partial response (PR). Fifteen patients (34.1%) had stable disease (SD). Nausea was the most common adverse event (AE) seen in 35 patients (79.5%). CONCLUSION: The addition of dasatinib did not appear to add incremental clinical benefit to FOLFOX in untreated patients with mPC.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Neoplasias Pancreáticas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Dasatinib/farmacología , Dasatinib/uso terapéutico , Fluorouracilo/uso terapéutico , Humanos , Leucovorina/uso terapéutico , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Resultado del Tratamiento
20.
Anal Chim Acta ; 1165: 338542, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-33975694

RESUMEN

Aerosol transmission is one of the three major transmission routes of respiratory viruses. However, the dynamics and significance of the aerosol transmission route are not well understood, partially due to the lack of rapid and efficient tools for on-the-spot detection of airborne viruses. We report a hand-held device that integrates a 3D-printed sample preparation unit with a laminated paper-based RNA amplification unit. The sample preparation unit features an innovative reagent delivery scheme based on a ball-based valve capable of storing and delivering reagents through the rotation of the unit without manual pipetting, while the paper-based unit enables RNA enrichment and reverse transcription loop-mediated isothermal amplification (RT-LAMP). We have determined the detection limit of the integrated sample-preparation/amplification device (SPAD) at 1 TCID50 H1N1 influenza viruses in 140 µL aqueous sample. Further, we integrated SPAD with a previously reported viable virus aerosol sampler (VIVAS), a water-vapor-based condensational growth system capable of collecting aerosolized virus particles (Pan et al., 2016) [1]. Using the combined VIVAS-SPAD platform, we have demonstrated the collection/detection of lab-generated, airborne H1N1 influenza viruses in 65 min, suggesting that the platform has a potential for detecting and monitoring airborne virus transmission during outbreaks. The effective sampling and rapid detection of airborne viruses by the sample-to-answer platform will also help us better understand the dynamics and significance of aerosol transmission of infectious disease.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...