Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(24): 10863-10873, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38842426

RESUMEN

Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 µg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.


Asunto(s)
Nitratos , Oxidación-Reducción , Nitratos/química , Técnicas Electroquímicas , Catálisis , Metales/química
2.
Adv Mater ; : e2402979, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811011

RESUMEN

Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.

3.
Small Methods ; : e2400432, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767183

RESUMEN

Electrocatalytic carbon dioxide reduction reaction (CO2RR) has emerged as a promising and sustainable approach to cut carbon emissions by converting greenhouse gas CO2 to value-added chemicals and fuels. Metal-organic coordination compounds, especially the copper (Cu)-based coordination compounds, which feature well-defined crystalline structures and designable metal active sites, have attracted much research attention in electrocatalytic CO2RR. Herein, the recent advances of electrochemical CO2RR on pristine Cu-based coordination compounds with different types of Cu active sites are reviewed. First, the general reaction pathways of electrocatalytic CO2RR on Cu-based coordination compounds are briefly introduced. Then the highly efficient conversion of CO2 on various kinds of Cu active sites (e.g., single-Cu site, dimeric-Cu site, multi-Cu site, and heterometallic site) is systematically discussed, along with the corresponding catalytic reaction mechanisms. Finally, some existing challenges and potential opportunities for this research direction are provided to guide the rational design of metal-organic coordination compounds for their practical application in electrochemical CO2RR.

4.
Angew Chem Int Ed Engl ; 63(26): e202402841, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38647519

RESUMEN

The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h-1 mgcat -1 (75.5 mg h-1 mgIr -1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.

5.
ACS Nano ; 18(14): 9823-9851, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38546130

RESUMEN

With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.

6.
ACS Nano ; 18(9): 7192-7203, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38385434

RESUMEN

Electrocatalytic carbon dioxide reduction reaction (CO2RR) toward value-added chemicals/fuels has offered a sustainable strategy to achieve a carbon-neutral energy cycle. However, it remains a great challenge to controllably and precisely regulate the coordination environment of active sites in catalysts for efficient generation of targeted products, especially the multicarbon (C2+) products. Herein we report the coordination environment engineering of metal centers in coordination polymers for efficient electroreduction of CO2 to C2+ products under neutral conditions. Significantly, the Cu coordination polymer with Cu-N2S2 coordination configuration (Cu-N-S) demonstrates superior Faradaic efficiencies of 61.2% and 82.2% for ethylene and C2+ products, respectively, compared to the selective formic acid generation on an analogous polymer with the Cu-I2S2 coordination mode (Cu-I-S). In situ studies reveal the balanced formation of atop and bridge *CO intermediates on Cu-N-S, promoting C-C coupling for C2+ production. Theoretical calculations suggest that coordination environment engineering can induce electronic modulations in Cu active sites, where the d-band center of Cu is upshifted in Cu-N-S with stronger selectivity to the C2+ products. Consequently, Cu-N-S displays a stronger reaction trend toward the generation of C2+ products, while Cu-I-S favors the formation of formic acid due to the suppression of C-C couplings for C2+ pathways with large energy barriers.

7.
Nano Lett ; 24(5): 1553-1562, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266492

RESUMEN

Although metal-organic frameworks (MOFs) have attracted more attention for the electrocatalytic CO2 reduction reaction (CO2RR), obtaining multicarbon products with a high Faradaic efficiency (FE) remains challenging, especially under neutral conditions. Here, we report the controlled synthesis of stable Cu(I) 5-mercapto-1-methyltetrazole framework (Cu-MMT) nanostructures with different facets by rationally modulating the reaction solvents. Significantly, Cu-MMT nanostructures with (001) facets are acquired using isopropanol as a solvent, which favor multicarbon production with an FE of 73.75% and a multicarbon:single-carbon ratio of 3.93 for CO2RR in a neutral electrolyte. In sharp contrast, Cu-MMT nanostructures with (100) facets are obtained utilizing water, promoting single-carbon generation with an FE of 63.98% and a multicarbon: single-carbon ratio of only 0.18. Furthermore, this method can be extended to other Cu-MMT nanostructures with different facets in tuning the CO2 reduction selectivity. This work opens up new opportunities for the highly selective and efficient CO2 electroreduction to multicarbon products on MOFs via facet engineering.

8.
Adv Mater ; 36(14): e2313548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279631

RESUMEN

Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h-1 mgcat -1 toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.

9.
Proc Natl Acad Sci U S A ; 120(50): e2311149120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064508

RESUMEN

Zinc-nitrate batteries can integrate energy supply, ammonia electrosynthesis, and sewage disposal into one electrochemical device. However, current zinc-nitrate batteries still severely suffer from the limited energy density and poor rechargeability. Here, we report the synthesis of tetraphenylporphyrin (tpp)-modified heterophase (amorphous/crystalline) rhodium-copper alloy metallenes (RhCu M-tpp). Using RhCu M-tpp as a bifunctional catalyst for nitrate reduction reaction (NO3RR) and ethanol oxidation reaction in neutral solution, a highly rechargeable and low-overpotential zinc-nitrate/ethanol battery is successfully constructed, which exhibits outstanding energy density of 117364.6 Wh kg-1cat, superior rate capability, excellent cycling stability of ~400 cycles, and potential ammonium acetate production. Ex/in situ experimental studies and theoretical calculations reveal that there is a molecule-metal relay catalysis in NO3RR over RhCu M-tpp that significantly facilitates the ammonia selectivity and reaction kinetics via a low energy barrier pathway. This work provides an effective design strategy of multifunctional metal-based catalysts toward the high-performance zinc-based hybrid energy systems.

10.
Proc Natl Acad Sci U S A ; 120(32): e2306461120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523530

RESUMEN

Electrochemical nitrate reduction reaction (NO3RR) to ammonia has been regarded as a promising strategy to balance the global nitrogen cycle. However, it still suffers from poor Faradaic efficiency (FE) and limited yield rate for ammonia production on heterogeneous electrocatalysts, especially in neutral solutions. Herein, we report one-pot synthesis of ultrathin nanosheet-assembled RuFe nanoflowers with low-coordinated Ru sites to enhance NO3RR performances in neutral electrolyte. Significantly, RuFe nanoflowers exhibit outstanding ammonia FE of 92.9% and yield rate of 38.68 mg h-1 mgcat-1 (64.47 mg h-1 mgRu-1) at -0.30 and -0.65 V (vs. reversible hydrogen electrode), respectively. Experimental studies and theoretical calculations reveal that RuFe nanoflowers with low-coordinated Ru sites are highly electroactive with an increased d-band center to guarantee efficient electron transfer, leading to low energy barriers of nitrate reduction. The demonstration of rechargeable zinc-nitrate batteries with large-specific capacity using RuFe nanoflowers indicates their great potential in next-generation electrochemical energy systems.

11.
Adv Mater ; 35(51): e2304414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37515580

RESUMEN

Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.

12.
Proc Natl Acad Sci U S A ; 120(26): e2303262120, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339215

RESUMEN

Graphene nanoribbons (GNRs) are widely recognized as intriguing building blocks for high-performance electronics and catalysis owing to their unique width-dependent bandgap and ample lone pair electrons on both sides of GNR, respectively, over the graphene nanosheet counterpart. However, it remains challenging to mass-produce kilogram-scale GNRs to render their practical applications. More importantly, the ability to intercalate nanofillers of interest within GNR enables in-situ large-scale dispersion and retains structural stability and properties of nanofillers for enhanced energy conversion and storage. This, however, has yet to be largely explored. Herein, we report a rapid, low-cost freezing-rolling-capillary compression strategy to yield GNRs at a kilogram scale with tunable interlayer spacing for situating a set of functional nanomaterials for electrochemical energy conversion and storage. Specifically, GNRs are created by sequential freezing, rolling, and capillary compression of large-sized graphene oxide nanosheets in liquid nitrogen, followed by pyrolysis. The interlayer spacing of GNRs can be conveniently regulated by tuning the amount of nanofillers of different dimensions added. As such, heteroatoms; metal single atoms; and 0D, 1D, and 2D nanomaterials can be readily in-situ intercalated into the GNR matrix, producing a rich variety of functional nanofiller-dispersed GNR nanocomposites. They manifest promising performance in electrocatalysis, battery, and supercapacitor due to excellent electronic conductivity, catalytic activity, and structural stability of the resulting GNR nanocomposites. The freezing-rolling-capillary compression strategy is facile, robust, and generalizable. It renders the creation of versatile GNR-derived nanocomposites with adjustable interlay spacing of GNR, thereby underpinning future advances in electronics and clean energy applications.

13.
Adv Mater ; : e2304021, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294062

RESUMEN

Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3 RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3 RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.

14.
Nanoscale ; 15(14): 6456-6475, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36951476

RESUMEN

With the mechanical exfoliation of graphene in 2004, researchers around the world have devoted significant efforts to the study of two-dimensional (2D) nanomaterials. Nowadays, 2D nanomaterials are being developed into a large family with varieties of structures and derivatives. Due to their fascinating electronic, chemical, and physical properties, 2D nanomaterials are becoming an important type of catalyst for the electrochemical carbon dioxide reduction reaction (CO2RR). Here, we review the recent progress in electrochemical CO2RR using 2D nanomaterial-based catalysts. First, we briefly describe the reaction mechanism of electrochemical CO2 reduction to single-carbon (C1) and multi-carbon (C2+) products. Then, we discuss the strategies and principles for applying metal materials to functionalize 2D nanomaterials, such as graphene-based materials, metal-organic frameworks (MOFs), and transition metal dichalcogenides (TMDs), as well as applications of resultant materials in the electrocatalytic CO2RR. Finally, we summarize the present research advances and highlight the current challenges and future opportunities of using metal-functionalized 2D nanomaterials in the electrochemical CO2RR.

15.
Chem Soc Rev ; 52(5): 1723-1772, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36779475

RESUMEN

In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.

16.
Small Methods ; 6(12): e2201107, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36287094

RESUMEN

Prussian blue analogs (PBAs) with open and porous frameworks have attracted wide attention in alkali metal ion batteries due to their high theoretical specific capacities and fast ion insertion/extraction kinetics. However, abundant coordinated water usually exists in traditional PBAs synthesized in aqueous systems. Consequently, the competition between coordinated water and alkali ions easily causes the rapid structural collapse of PBAs during the repeated discharge/charge cycles, lowering the cycling stability, and rate performance of batteries. Besides, most reported PBAs adopt the cubic/particle-like morphologies with large sizes, which usually suffer from insufficient ion diffusion especially at high rates. Herein, a facile and general strategy for the synthesis of 2D CoCo, CuFe, CuCeFe, and CuCeCo-based PBA nanosheets is reported. As a proof-of-concept application, Co3 [Co(CN)6 ]2 nanosheets are evaluated as anode materials for lithium-ion batteries. Thanks to the lower coordinated water content, smaller impedance and higher lithium-ion diffusion coefficient, Co3 [Co(CN)6 ]2 nanosheets deliver a superior reversible capacity of 810.4 mAh g-1 at 100 mA g-1 , better rate performance, and higher cycling stability compared to common Co3 [Co(CN)6 ]2 cubes. Further studies indicate that the capacitance-controlled electrochemical behaviors dominate in the Co3 [Co(CN)6 ]2 nanosheets, giving rise to their excellent structural stability and superior lithium storage performance even at high rates.

17.
Proc Natl Acad Sci U S A ; 119(40): e2204666119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161954

RESUMEN

Given the high energy density and eco-friendly characteristics, lithium-carbon dioxide (Li-CO2) batteries have been considered to be a next-generation energy technology to promote carbon neutral and space exploration. However, Li-CO2 batteries suffer from sluggish reaction kinetics, causing large overpotential and poor energy efficiency. Here, we observe enhanced reaction kinetics in aprotic Li-CO2 batteries with unconventional phase 4H/face-centered cubic (fcc) iridium (Ir) nanostructures grown on gold template. Significantly, 4H/fcc Ir exhibits superior electrochemical performance over fcc Ir in facilitating the round-trip reaction kinetics of Li+-mediated CO2 reduction and evolution, achieving a low charge plateau below 3.61 V and high energy efficiency of 83.8%. Ex situ/in situ studies and theoretical calculations reveal that the boosted reaction kinetics arises from the highly reversible generation of amorphous/low-crystalline discharge products on 4H/fcc Ir via the Ir-O coupling. The demonstration of flexible Li-CO2 pouch cells with 4H/fcc Ir suggests the feasibility of using unconventional phase nanomaterials in practical scenarios.

18.
Small ; 18(26): e2201076, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35638469

RESUMEN

The oxygen evolution reaction (OER) is crucial to electrochemical hydrogen production. However, designing and fabricating efficient electrocatalysts still remains challenging. By confinedly coordinating organic ligands with metal species in layered double hydroxides (LDHs), an innovative LDHs-assisted approach is developed to facilely synthesize freestanding bimetallic 2D metal-organic framework nanosheets (2D MOF NSs), preserving the metallic components and activities in OER. Furthermore, the research has demonstrated that the incorporation of carboxyl organic ligands coordinated with metal atoms as proton transfer mediators endow 2D MOF NSs with efficient proton transfer during the electrochemical OHads  â†’ Oads transition. These freestanding NiFe-2D MOF NSs require a small overpotential of 260 mV for a current density of 10 mA cm-2 . When this strategy is applied to LDH nanosheets grown on nickel foam, the overpotential can be reduced to 221 mV. This outstanding OER activity supports the capability of multimetallic organic frameworks for the rational design of water oxidation electrocatalysts. This strategy provides a universal path to the synthesis of 2D MOF NSs that can be used as electrocatalysts directly.

19.
Small ; 18(24): e2201311, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35561067

RESUMEN

Deficiencies in understanding the local environment of active sites and limited synthetic skills challenge the delivery of industrially-relevant current densities with low overpotentials and high selectivity for CO2 reduction. Here, a transient laser induction of metal salts can stimulate extreme conditions and rapid kinetics to produce defect-rich indium nanoparticles (L-In) is reported. Atomic-resolution microscopy and X-ray absorption disclose the highly defective and undercoordinated local environment in L-In. In a flow cell, L-In shows a very small onset overpotential of ≈92 mV and delivers a current density of ≈360 mA cm-2 with a formate Faradaic efficiency of 98% at a low potential of -0.62 V versus RHE. The formation rate of formate reaches up to 6364.4 µmol h-1mgIn-1$mg_{{\rm{In}}}^{--1}$ , which is nearly 39 folds higher than that of commercial In (160.7 µmol h-1mgIn-1$mg_{{\rm{In}}}^{--1}$ ), outperforming most of the previous results that have been reported under KHCO3 environments. Density function theory calculations suggest that the defects facilitate the formation of *OCHO intermediate and stabilize the *HCOOH while inhibiting hydrogen adsorption. This study suggests that transient solid-state laser induction provides a facile and cost-effective approach to form ligand-free and defect-rich materials with tailored activities.


Asunto(s)
Indio , Láseres de Estado Sólido , Dióxido de Carbono/química , Formiatos/química
20.
Adv Mater ; 34(19): e2110607, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35275439

RESUMEN

Electrocatalytic carbon dioxide reduction reaction (CO2 RR) holds significant potential to promote carbon neutrality. However, the selectivity toward multicarbon products in CO2 RR is still too low to meet practical applications. Here the authors report the delicate synthesis of three kinds of Ag-Cu Janus nanostructures with {100} facets (JNS-100) for highly selective tandem electrocatalytic reduction of CO2 to multicarbon products. By controlling the surfactant and reduction kinetics of Cu precursor, the confined growth of Cu with {100} facets on one of the six equal faces of Ag nanocubes is realized. Compared with Cu nanocubes, Ag65 -Cu35 JNS-100 demonstrates much superior selectivity for both ethylene and multicarbon products in CO2 RR at less negative potentials. Density functional theory calculations reveal that the compensating electronic structure and carbon monoxide spillover in Ag65 -Cu35 JNS-100 contribute to the enhanced CO2 RR performance. This study provides an effective strategy to design advanced tandem catalysts toward the extensive application of CO2 RR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...