Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38592925

RESUMEN

Drought-induced stress poses a significant challenge to wheat throughout its growth, underscoring the importance of identifying drought-stable quantitative trait loci (QTLs) for enhancing grain yield. Here, we evaluated 18 yield-related agronomic and physiological traits, along with their drought tolerance indices, in a recombinant inbred line population derived from the XC7 × XC21 cross. These evaluations were conducted under both non-stress and drought-stress conditions. Drought stress significantly reduced grain weight per spike and grain yield per plot. Genotyping the recombinant inbred line population using the wheat 90K single nucleotide polymorphism array resulted in the identification of 131 QTLs associated with the 18 traits. Drought stress also exerted negative impacts on grain formation and filling, directly leading to reductions in grain weight per spike and grain yield per plot. Among the identified QTLs, 43 were specifically associated with drought tolerance across the 18 traits, with 6 showing direct linkages to drought tolerance in wheat. These results provide valuable insights into the genetic mechanisms governing wheat growth and development, as well as the traits contributing to the drought tolerance index. Moreover, they serve as a theoretical foundation for the development of new wheat cultivars having exceptional drought tolerance and high yield potentials under both drought-prone and drought-free conditions.

2.
Front Genet ; 14: 1015599, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911411

RESUMEN

Background: Salinity stress is a major adverse environmental factor that can limit crop yield and restrict normal land use. The selection of salt-tolerant strains and elucidation of the underlying mechanisms by plant breeding scientists are urgently needed to increase agricultural production in arid and semi-arid regions. Results: In this study, we selected the salt-tolerant wheat (Triticum aestivum) strain ST9644 as a model to study differences in expression patterns between salt-tolerant and salt-sensitive strains. High-throughput RNA sequencing resulted in more than 359.10 Gb of clean data from 54 samples, with an average of 6.65 Gb per sample. Compared to the IWGSC reference annotation, we identified 50,096 new genes, 32,923 of which have functional annotations. Comparisons of abundances between salt-tolerant and salt-sensitive strains revealed 3,755, 5,504, and 4,344 genes that were differentially expressed at 0, 6, and 24 h, respectively, in root tissue under salt stress. KEGG pathway analysis of these genes showed that they were enriched for phenylpropanoid biosynthesis (ko00940), cysteine and methionine metabolism (ko00270), and glutathione metabolism (ko00480). We also applied weighted gene co-expression network analysis (WGCNA) analysis to determine the time course of root tissue response to salt stress and found that the acute response lasts >6 h and ends before 12 h. We also identified key alternative splicing factors showing different splicing patterns in salt-sensitive and salt-tolerant strains; however, only few of them were differentially expressed in the two groups. Conclusion: Our results offer a better understanding of wheat salt tolerance and improve wheat breeding.

3.
Front Plant Sci ; 14: 1309678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38304458

RESUMEN

Introduction: Wheat is a food crop with a large global cultivation area, and the content and quality of wheat glutenin accumulation are important indicators of the quality of wheat flour. Methods: To elucidate the gene expression regulation and metabolic characteristics related to the gluten content during wheat grain formation, transcriptomic and metabolomic analyses were performed for the high gluten content of the Xinchun 26 cultivar and the low proteins content of the Xinchun 34 cultivar at three periods (7 d, 14 d and 21 d) after flowering. Results: Transcriptomic analysis revealed that 5573 unique differentially expressed genes (DEGs) were divided into two categories according to their expression patterns during the three periods. The metabolites detected were mainly divided into 12 classes. Lipid and lipid-like molecule levels and phenylpropanoid and polyketide levels were the highest, and the difference analysis revealed a total of 10 differentially regulated metabolites (DRMs) over the three periods. Joint analysis revealed that the DEGs and DRMs were significantly enriched in starch and sucrose metabolism; the citrate cycle; carbon fixation in photosynthetic organisms; and alanine, aspartate and glutamate metabolism pathways. The genes and contents of the sucrose and gluten synthesis pathways were analysed, and the correlation between gluten content and its related genes was calculated. Based on weighted correlation network analysis (WGCNA), by constructing a coexpression network, a total of 5 specific modules and 8 candidate genes that were strongly correlated with the three developmental stages of wheat grain were identified. Discussion: This study provides new insights into the role of glutenin content in wheat grain formation and reveals potential regulatory pathways and candidate genes involved in this developmental process.

4.
Breed Sci ; 69(1): 55-67, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31086484

RESUMEN

Accurate evaluation of morphological and physiological traits is critical for selection of wheat (Triticum aestivum L.) cultivars exhibiting high yield, which is stable over different growing conditions. In order to use selection index based on high yield, high grain quality and drought tolerance in wheat, a set of 145 CIMMYT Wheat Physiological Germplasm Screening Nursery lines and seven local spring wheat varieties were phenotyped and evaluated for physiological and yield traits under two irrigation regimes during the 2011 and 2012 growing seasons in Xinjiang, China. The results showed that drought-stress significantly increased canopy temperature but reduced grain yield, grain weight per spike, normalized difference vegetation index at the flowering and grain filling stages, chlorophyll content at the grain filling stage, grain plumpness, grain number per spike, thousand-grain weight, and plant height. Grain weight per spike, plant height and grain plumpness explained 61.8% of the total phenotypic variation in grain yield under no-stress conditions, where they were the three principal factors most closely related to grain yield. Under drought-stress conditions, canopy temperature at the grain filling stage, plant height and grain plumpness were the three principal factors affecting grain yield, and contributed 44.8% of the total phenotypic variation in grain yield. Finally, ten genotypes, including three local varieties, 'Xinchun 11', 'Xinchun 23' and 'Xinchun 29', with appropriate plant height and high and stable yield under both no-stress and drought-stress conditions over the two years of trials, were identified and can be recommended as core parents for spring wheat drought tolerance breeding in Xinjiang, China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA