Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Dig Liver Dis ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744556

RESUMEN

OBJECTIVE: The primary purpose of the study was to explore the clinical efficacy of the novel snare assisted endoscopic resection of extraluminal growing gastric gastrointestinal stromal tumors (gastric GISTs) using external traction, and the secondary purpose was to compare the novel snare assisted endoscopic resection of extraluminal GISTs with the standard laparoscopic procedure. METHODS: We retrospectively analyzed the patients who underwent novel external traction assisted endoscopic resection or laparoscopic resection for their extraluminal gastric GIST ≤5 cm in diameter. RESULTS: A total of 111 patients (27 in the endoscopic group and 84 in the laparoscopic group) were included in this study. There was no significant difference in tumor diameter and complication rate between the two groups. The overall procedure time was slightly higher in the endoscopic group compared to the laparoscopic group (P = 0.034). However, postoperative hospitalization time (P < 0.001) and postoperative fasting time (P = 0.005) were shorter in the endoscopic group compared to the laparoscopic group. CONCLUSION: Snare external traction-assisted endoscopic resection of extraluminal growing gastric GISTs is safe and effective, and it provides a new adjunctive method for endoscopic resection of GIST.

2.
J Oleo Sci ; 73(5): 695-708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692892

RESUMEN

This study was to investigate the effects of Smilax China L. saponins (SCS) on non-alcoholic fatty liver disease (NAFLD). Rats were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by SCS treatment for 8 weeks. The effect of SCS on liver injury was observed by H&E staining and the regulative mechanism of SCS on lipid formation was exposed by detecting Oil red O, insulin resistance (IR), and fatty acids synthesis (FAS). Furthermore, transcriptomics and metabolomics were performed to analyze the potential targets. The experimental results indicated that SCS exerted a positive curative effect in alleviating HFD-induced overweight, hepatic injury, steatosis, and lipid formation and accumulation in rats, and the preliminary mechanism studies showed that SCS could alleviate IR, inhibit FAS expression, and reduce Acetyl-CoA levels. Besides, the integrative analysis of transcriptomics and metabolomics exposed the targets of SCS to regulate lipid production likely being the sphingolipid metabolism and glycerophospholipid metabolism pathways. This study demonstrates that SCS significantly ameliorates lipid metabolic disturbance in rats with NAFLD by relieving insulin resistance, inhibiting the FAS enzymes, and regulating the sphingolipid and glycerophospholipid metabolism pathways.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Metabolismo de los Lípidos , Metabolómica , Enfermedad del Hígado Graso no Alcohólico , Saponinas , Smilax , Transcriptoma , Animales , Smilax/química , Saponinas/farmacología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Masculino , Metabolómica/métodos , Dieta Alta en Grasa/efectos adversos , Transcriptoma/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Esfingolípidos/metabolismo , Glicerofosfolípidos/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Modelos Animales de Enfermedad
3.
FASEB J ; 38(10): e23626, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38739537

RESUMEN

Transplantation of adipose-derived stem cells (ASCs) is a promising option in the field of chronic wounds treatment. However, the effectiveness of ASCs therapies has been hampered by highly inflammatory environment in chronic wound areas. These problems could be partially circumvented using efficient approaches that boost the survival and anti-inflammatory capacity of transplanted ASCs. Here, by application of mechanical stretch (MS), we show that ASCs exhibits increased survival and immunoregulatory properties in vitro. MS triggers the secretion of macrophage colony stimulating factor (M-CSF) from ASCs, a chemokine that is linked to anti-inflammatory M2-like macrophages polarization. When the MS-ASCs were transplanted to chronic wounds, the wound area yields significantly faster closure rate and lower inflammatory mediators, largely due to macrophages polarization driven by transplanted MS-ASCs. Thus, our work shows that mechanical stretch can be harnessed to enhance ASCs transplantation efficiency in chronic wounds treatment.


Asunto(s)
Tejido Adiposo , Macrófagos , Cicatrización de Heridas , Cicatrización de Heridas/fisiología , Macrófagos/metabolismo , Animales , Tejido Adiposo/citología , Humanos , Ratones , Estrés Mecánico , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Masculino , Factor Estimulante de Colonias de Macrófagos/metabolismo , Trasplante de Células Madre/métodos , Inflamación/terapia , Ratones Endogámicos C57BL
4.
J Neurosurg ; : 1-9, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579348

RESUMEN

OBJECTIVE: This study aimed to investigate whether high homocysteine (Hcy) levels associated with the MTHFR gene influence the formation of the collateral vascular network in patients with moyamoya disease (MMD) after encephaloduroarteriosynangiosis (EDAS) by influencing the number of endothelial progenitor cells (EPCs) in peripheral blood. METHODS: A total of 118 Chinese patients with bilateral primary MMD were prospectively included. Blood samples were collected from the anterior cubital vein before surgery, and MTHFR rs9651118 was genotyped using high-throughput mass spectrometry to determine the genotype of the test specimen. Serum Hcy and EPC levels were measured, the latter with flow cytometry. Digital subtraction angiography was performed 6 months after EDAS, and the formation of collateral circulation was evaluated using the Matsushima grade system. The correlations between MTHFR rs9651118 genotype, Hcy and EPC levels, and Matsushima grade were compared. RESULTS: Among the 118 patients, 53 had the TT genotype (wild type) of MTHFR rs9651118, 33 TC genotype (heterozygous mutation), and 32 CC genotype (homozygous mutation). The mean ± SD Hcy level was 13.4 ± 9.5 µmol/L in TT patients, 9.8 ± 3.2 µmol/L in TC patients, and 8.9 ± 2.9 µmol/L in CC patients (p < 0.001). The level of EPCs in the venous blood of TT patients was 0.039% ± 0.016%, that of TC patients 0.088% ± 0.061%, and that of CC patients 0.103% ± 0.062% (p < 0.001). When the rs9651118 gene locus was mutated, Matsushima grade was better (p < 0.001) but there was no difference between heterozygous and homozygous mutations. CONCLUSIONS: The results suggest that the MTHFR rs9651118 polymorphism is a good biomarker for collateral vascular network formation after EDAS in MMD patients.

6.
IEEE Trans Cybern ; PP2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578861

RESUMEN

The utilization of robots in computer, communication, and consumer electronics (3C) assembly has the potential to significantly reduce labor costs and enhance assembly efficiency. However, many typical scenarios in 3C assembly, such as the assembly of flexible printed circuits (FPCs), involve complex manipulations with long-horizon steps and high-precision requirements that cannot be effectively accomplished through manual programming or conventional skill-learning methods. To address this challenge, this article proposes a learning-based framework for the acquisition of complex 3C assembly skills assisted by a multimodal digital-twin environment. First, we construct a fully equivalent digital-twin environment based on the real-world counterpart, equipped with visual, tactile force, and proprioception information, and then collect multimodal demonstration data using virtual reality (VR) devices. Next, we construct a skill knowledge base through multimodal skill parsing of demonstration data, resulting in primitive policy sequences for achieving 3C assembly tasks. Finally, we train primitive policies via a combination of curriculum learning, residual reinforcement learning, and domain randomization methods and transfer the learned skill from the digital-twin environment to the real-world environment. The experiments are conducted to verify the effectiveness of our proposed method.

7.
Acta Pharmacol Sin ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491161

RESUMEN

Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 µM) promoted wound healing and reduced cell apoptosis. NGR1 (100 µM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/ß-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/ß-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/ß-Catenin signaling pathway.

8.
J Inflamm Res ; 17: 1721-1733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523687

RESUMEN

Background: The immune system plays an important role in the onset and development of moyamoya disease (MMD), but the specific mechanisms remain unclear. This study aimed to explore the relationship between the expression of complements and immunoglobulin in serum and progression of MMD. Methods: A total of 84 patients with MMD and 70 healthy individuals were enrolled. Serum immunoglobulin and complement C3 and C4 expression were compared between healthy individuals and MMD patients. Follow-up was performed at least 6 months post-operation. Univariate and multivariate analysis after adjusting different covariates were performed to explore predictive factors associated with vasculopathy progression. A nomogram basing on the results of multivariate analysis was established to predict vasculopathy progression. Results: Compared to healthy individuals, MMD patients had significantly lower expression of serum complements C3 (P = 0.003*). Among MMD patients, C3 was significantly lower in those with late-stage disease (P = 0.001*). Of 84 patients, 27/84 (32.1%) patients presented with vasculopathy progression within a median follow-up time of 13.0 months. Age (P=0.006*), diastolic blood pressure (P=0.004*) and serum complement C3 expression (P=0.015*) were associated with vasculopathy progression after adjusting different covariables. Conclusion: Complement C3 is downregulated in moyamoya disease and decreases even further in late-Suzuki stage disease. Age, diastolic blood pressure and serum complement C3 expression are associated with vasculopathy progression, suggesting that the complement might be involved in the development of moyamoya disease.

9.
Sci Total Environ ; 926: 171630, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508260

RESUMEN

Understanding the impacts of climate change and human activities on ecosystem services (ESs) and taking actions to adapt to and mitigate their negative impacts are of great benefit to sustainable regional development. In this paper, we integrate the System Dynamics Model (SD), the Future Land Use Simulation (FLUS) model, the Integrated Valuation and Trade-offs of ESs (InVEST) model, and the Structural Equation Model (SEM). We select three scenarios, SSP1-1.9, SSP2-4.5, and SSP5-8.5, from the Coupled Model Intercomparison Project 6 (CMIP6) to forecast future changes under these scenarios in the Yellow River Basin (YRB) by 2030. We predict future changes in water yield (WY), carbon storage (CS), soil retention (SR), and habitat quality (HQ) in the YRB. The results show that: (1) Under the SSP1-1.9 scenario, ecological land types such as forests, grasslands, and water bodies are protected and restored to a certain extent; under the SSP2-4.5 scenario, the degree of land spatial development occupies an intermediate state among the three scenarios; and under the SSP5-8.5 scenario, there is an obvious increase in the artificialization of the watershed's land use. (2) Under scenario SSP1-1.9, there is a comprehensive approach to sustainable development that significantly improves all ESs in the watershed, while the SSP5-8.5 and SSP2-4.5 scenarios demonstrate an increase in trade-offs between WY, HQ, and CS, especially in the downstream area. (3) Anthropogenic factors having more significant impacts in the SSP5-8.5 scenario. In this paper, we not only summarize the differences in trade-offs among various ESs but also provide an in-depth analysis of the key factors affecting future ESs, providing new ideas and insights for the sustainable development of ES in the future. In summary, we propose a prioritized development pathway for the future, a reduction of trade-offs between ESs, and an improved capacity to respond to challenges.

10.
Lab Invest ; 104(5): 102041, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38431116

RESUMEN

A specific splicing isoform of RNASET2 is associated with worse oncologic outcomes in clear cell renal cell carcinoma (ccRCC). However, the interplay between wild-type RNASET2 and its splice variant and how this might contribute to the pathogenesis of ccRCC remains poorly understood. We sought to better understand the relationship of RNASET2 in the pathogenesis of ccRCC and the interplay with a pathogenic splicing isoform (RNASET2-SV) and the tumor immune microenvironment. Using data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium, we correlated clinical variables to RNASET2 expression and the presence of a specific RNASET2-SV. Immunohistochemical staining with matched RNA sequencing of ccRCC patients was then utilized to understand the spatial relationships of RNASET2 with immune cells. Finally, in vitro studies were performed to demonstrate the oncogenic role of RNASET2 and highlight its potential mechanisms. RNASET2 gene expression is associated with higher grade tumors and worse overall survival in The Cancer Genome Atlas cohort. The presence of the RNASET2-SV was associated with increased expression of the wild-type RNASET2 protein and epigenetic modifications of the gene. Immunohistochemical staining revealed increased intracellular accumulation of RNASET2 in patients with increased RNA expression of RNASET2-SV. In vitro experiments reveal that this accumulation results in increased cell proliferation, potentially from altered metabolic pathways. RNASET2 exhibits a tumor-promoting role in the pathogenesis of ccRCC that is increased in the presence of a specific RNASET2-SV and associated with changes in the cellular localization of the protein.

11.
Stroke Vasc Neurol ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460971

RESUMEN

BACKGROUND: The relationship between anterior cerebral artery (ACA) occlusion and moyamoya disease (MMD) has rarely been studied. In this study, we focused on a special type of MMD: isolated ACA-occlusive MMD. We investigated clinical attributes, genotypes and progression risk factors in patients with ACA-occlusive MMD, providing initial insights into the relationship between ACA occlusion and MMD. METHODS: We retrospectively analysed digital subtraction angiography (DSA) from 2486 patients and diagnosed 139 patients with ACA-occlusive MMD. RNF213 p.R4810K (rs112735431) mutation analysis was performed. Patients were categorised into progression and non-progression groups based on whether they progressed to typical MMD. Differences in clinical characteristics, neuropsychological assessment, radiological findings and genotypes were evaluated. Logistic regression analyses identified risk factors for ACA-occlusive MMD progression. RESULTS: The median age of patients with ACA-occlusive MMD was 36 years, and the primary symptom was transient ischaemic attack (TIA). 72.3% of ACA-occlusive MMD patients had cognitive decline. Of 116 patients who underwent RNF213 gene mutation analysis, 90 patients (77.6%) carried the RNF213 p.R4810K GG allele and 26 (22.4%) carried the GA allele. Of 102 patients with follow-up DSA data, 40 patients (39.2%) progressed. Kaplan-Meier curve estimates indicated a higher incidence of ischaemic stroke in the progression group during follow-up (p=0.035). Younger age (p=0.041), RNF213 p.R4810K GA genotype (p=0.037) and poor collateral compensation from the middle cerebral artery (MCA) to ACA (p<0.001) were risk factors of ACA-occlusive MMD progression to typical MMD. CONCLUSIONS: Cognitive decline and TIA might be the main manifestations of ACA-occlusive MMD. Isolated ACA occlusion may be an early signal of MMD. The initial lesion site of MMD is not strictly confined to the terminal portion of the internal carotid artery. Younger patients, patients with RNF213 p.R4810K GA genotype or those with inadequate MCA-to-ACA compensation are more likely to develop typical MMD.

12.
Dig Dis Sci ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483780

RESUMEN

OBJECTIVE: To investigate the safety and prognosis of enbloc or piecemeal removal after enbloc resection of a gastric GIST by comparing the clinical data of endoscopic en block resection and piecemeal removal (EP) and en block resection and complete removal (EC) of gastric GISTs. METHODS: A total of 111 (43 endoscopic piecemeal, and 68 complete removal) patients with gastric GIST's ≥ 2 cm in diameter who underwent endoscopic therapy from January 2016 to June 2020 at the First Affiliated Hospital of Zhengzhou University were retrospectively analyzed. In all cases, it was ensured that the tumor was intact during the resection, however, it was divided into EP group and EC group based on whether the tumor was completely removed or was cut into pieces which were then removed. The patients' recurrence-free survival rate and recurrence-free survival (RFS) were recorded. RESULTS: There was no statistically significant difference in RFS rates between the two groups (P = 0.197). The EP group had relatively high patient age, tumor diameter, risk classification, and operation time. However, there was no statistically significant difference in the number of nuclear fission images, postoperative hospitalization time, postoperative fasting time, complication rate and complication grading between the two groups (P > 0.05). CONCLUSION: Endoscopic piecemeal removal after en block resection of gastric GIST is safe and effective and achieves similar clinical outcomes as complete removal after en block resection.

13.
Nat Commun ; 15(1): 2234, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472180

RESUMEN

Coherent spin waves possess immense potential in wave-based information computation, storage, and transmission with high fidelity and ultra-low energy consumption. However, despite their seminal importance for magnonic devices, there is a paucity of both structural prototypes and theoretical frameworks that regulate the spin current transmission and magnon hybridization mediated by coherent spin waves. Here, we demonstrate reconfigurable coherent spin current transmission, as well as magnon-magnon coupling, in a hybrid ferrimagnetic heterostructure comprising epitaxial Gd3Fe5O12 and Y3Fe5O12 insulators. By adjusting the compensated moment in Gd3Fe5O12, magnon-magnon coupling was achieved and engineered with pronounced anticrossings between two Kittel modes, accompanied by divergent dissipative coupling approaching the magnetic compensation temperature of Gd3Fe5O12 (TM,GdIG), which were modeled by coherent spin pumping. Remarkably, we further identified, both experimentally and theoretically, a drastic variation in the coherent spin wave-mediated spin current across TM,GdIG, which manifested as a strong dependence on the relative alignment of magnetic moments. Our findings provide significant fundamental insight into the reconfiguration of coherent spin waves and offer a new route towards constructing artificial magnonic architectures.

14.
Nat Commun ; 15(1): 1148, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326303

RESUMEN

Melanoma incidence and mortality rates are historically higher for men than women. Although emerging studies have highlighted tumorigenic roles for the male sex hormone androgen and its receptor (AR) in melanoma, cellular and molecular mechanisms underlying these sex-associated discrepancies are poorly defined. Here, we delineate a previously undisclosed mechanism by which androgen-activated AR transcriptionally upregulates fucosyltransferase 4 (FUT4) expression, which drives melanoma invasiveness by interfering with adherens junctions (AJs). Global phosphoproteomic and fucoproteomic profiling, coupled with in vitro and in vivo functional validation, further reveal that AR-induced FUT4 fucosylates L1 cell adhesion molecule (L1CAM), which is required for FUT4-increased metastatic capacity. Tumor microarray and gene expression analyses demonstrate that AR-FUT4-L1CAM-AJs signaling correlates with pathological staging in melanoma patients. By delineating key androgen-triggered signaling that enhances metastatic aggressiveness, our findings help explain sex-associated clinical outcome disparities and highlight AR/FUT4 and its effectors as potential prognostic biomarkers and therapeutic targets in melanoma.


Asunto(s)
Melanoma , Molécula L1 de Adhesión de Célula Nerviosa , Humanos , Masculino , Femenino , Melanoma/metabolismo , Andrógenos , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Antígeno Lewis X/metabolismo , Glicosilación , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo
15.
Heliyon ; 10(4): e26108, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404780

RESUMEN

Objective: This study aimed to explore the long-term outcome of unilateral moyamoya disease and predict the clinical and genetic factors associated with contralateral progression in unilateral moyamoya disease. Methods: We retrospectively recruited unilateral moyamoya disease patients with available genetic data who underwent encephaloduroarteriosynangiosis (EDAS) surgery at our institution from January 2009 to November 2017. Long-term follow-up data, including clinical outcomes, angiographic features, and genetic information, were analyzed. Results: A total of 83 unilateral moyamoya disease patients with available genetic data were enrolled in our study. The mean duration of clinical follow-up was 7.9 ± 2.0 years. Among all patients, 19 patients demonstrated contralateral progression to bilateral disease. Heterozygous Ring Finger Protein 213 p.R4810K mutations occurred significantly more frequently in unilateral moyamoya disease patients with contralateral progression. Furthermore, patients with contralateral progression typically demonstrated an earlier age of onset than those with non-progressing unilateral moyamoya disease. In the contralateral progression group, posterior circulation involvement was observed in 11 (11/19, 57.9%) patients compared to 12 (12/64, 18.8%) in the non-contralateral progression group (P = 0.001). The time to peak of cerebral perfusion and neurological status showed significant postoperative improvement. Conclusion: Long-term follow-up revealed that the EDAS procedure might provide benefits for unilateral moyamoya disease patients. Ring Finger Protein 213 p.R4810K mutations, younger age, and posterior circulation involvement might predict the contralateral progression of unilateral moyamoya disease.

16.
Small ; : e2310825, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342581

RESUMEN

Bifunctional electrocatalysts with excellent activity and durability are highly desirable for alkaline overall water splitting, yet remain a significant challenge. In this contribution, palm-like Mo5 N6 /Ni3 S2 heterojunction arrays anchored in conductive Ni foam (denoted as Mo5 N6 -Ni3 S2 HNPs/NF) are developed. Benefiting from the optimized electronic structure configuration, hierarchical branched structure and abundant heterogeneous interfaces, the as-synthesized Mo5 N6 -Ni3 S2 HNPs/NF electrode exhibits remarkably stable bifunctional electrocatalytic activity in 1 m KOH solution. It only requires ultralow overpotentials of 59 and 190 mV to deliver a current density of 10 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH solution, respectively. Importantly, the overall water splitting electrolyzer assembled by Mo5 N6 -Ni3 S2 HNPs/NF exhibits an exceptionally low cell voltage (1.48 V@10 mA cm-2 ) and outstanding durability, surpassing most of the reported Ni-based bifunctional materials. Density functional theory (DFT) further confirms the heterostructure can optimize the Gibbs free energies of H and O-containing intermediates (OH, O, OOH) during HER and OER processes, thereby accelerating the catalytic kinetics of electrochemical water splitting. The findings provide a new design strategy toward low-cost and excellent catalysts for overall water splitting.

17.
J Nanobiotechnology ; 22(1): 80, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418972

RESUMEN

The advancement of biomaterials with antimicrobial and wound healing properties continues to present challenges. Macrophages are recognized for their significant role in the repair of infection-related wounds. However, the interaction between biomaterials and macrophages remains complex and requires further investigation. In this research, we propose a new sequential immunomodulation method to enhance and expedite wound healing by leveraging the immune properties of bacteria-related wounds, utilizing a novel mixed hydrogel dressing. The hydrogel matrix is derived from porcine acellular dermal matrix (PADM) and is loaded with a new type of bioactive glass nanoparticles (MBG) doped with magnesium (Mg-MBG) and loaded with Curcumin (Cur). This hybrid hydrogel demonstrates controlled release of Cur, effectively eradicating bacterial infection in the early stage of wound infection, and the subsequent release of Mg ions (Mg2+) synergistically inhibits the activation of inflammation-related pathways (such as MAPK pathway, NF-κB pathway, TNF-α pathway, etc.), suppressing the inflammatory response caused by infection. Therefore, this innovative hydrogel can safely and effectively expedite wound healing during infection. Our design strategy explores novel immunomodulatory biomaterials, offering a fresh approach to tackle current clinical challenges associated with wound infection treatment.


Asunto(s)
Antiinfecciosos , Curcumina , Infección de Heridas , Animales , Porcinos , Hidrogeles/farmacología , Cicatrización de Heridas , Biomimética , Vendajes , Antibacterianos/uso terapéutico , Materiales Biocompatibles , Inmunoterapia , Infección de Heridas/tratamiento farmacológico
18.
PLoS One ; 19(2): e0297775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38412156

RESUMEN

BACKGROUND: Diarrhea remains a leading cause of childhood illness throughout the world that is increasing due to climate change and is caused by various species of ecologically sensitive pathogens. The emerging Planetary Health movement emphasizes the interdependence of human health with natural systems, and much of its focus has been on infectious diseases and their interactions with environmental and human processes. Meanwhile, the era of big data has engendered a public appetite for interactive web-based dashboards for infectious diseases. However, enteric infectious diseases have been largely overlooked by these developments. METHODS: The Planetary Child Health & Enterics Observatory (Plan-EO) is a new initiative that builds on existing partnerships between epidemiologists, climatologists, bioinformaticians, and hydrologists as well as investigators in numerous low- and middle-income countries. Its objective is to provide the research and stakeholder community with an evidence base for the geographical targeting of enteropathogen-specific child health interventions such as novel vaccines. The initiative will produce, curate, and disseminate spatial data products relating to the distribution of enteric pathogens and their environmental and sociodemographic determinants. DISCUSSION: As climate change accelerates there is an urgent need for etiology-specific estimates of diarrheal disease burden at high spatiotemporal resolution. Plan-EO aims to address key challenges and knowledge gaps by making and disseminating rigorously obtained, generalizable disease burden estimates. Pre-processed environmental and EO-derived spatial data products will be housed, continually updated, and made publicly available for download to the research and stakeholder communities. These can then be used as inputs to identify and target priority populations living in transmission hotspots and for decision-making, scenario-planning, and disease burden projection. STUDY REGISTRATION: PROSPERO protocol #CRD42023384709.


Asunto(s)
Enfermedades Transmisibles , Países en Desarrollo , Niño , Humanos , Investigación Interdisciplinaria , Salud Infantil , Enfermedades Transmisibles/epidemiología , Factores de Riesgo , Diarrea/epidemiología , Internet
19.
Soft Robot ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38386776

RESUMEN

Teleoperation in soft robotics can endow soft robots with the ability to perform complex tasks through human-robot interaction. In this study, we propose a teleoperated anthropomorphic soft robot hand with variable degrees of freedom (DOFs) and a metamorphic palm. The soft robot hand consists of four pneumatic-actuated fingers, which can be heated to tune stiffness. A metamorphic mechanism was actuated to morph the hand palm by servo motors. The human fingers' DOF, gesture, and muscle stiffness were collected and mapped to the soft robotic hand through the sensory feedback from surface electromyography devices on the jib. The results show that the proposed soft robot hand can generate a variety of anthropomorphic configurations and can be remotely controlled to perform complex tasks such as primitively operating the cell phone and placing the building blocks. We also show that the soft hand can grasp a target through the slit by varying the DOFs and stiffness in a trail.

20.
Biol Direct ; 19(1): 10, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267979

RESUMEN

BACKGROUND: Neuropathic pain is chronic pain and has few effective control strategies. Studies have demonstrated that microRNAs have functions in neuropathic pain. However, no study has been conducted to demonstrate the role and mechanism of microRNA (miR)-31-5p in neuropathic pain. Accordingly, this study sought to determine the pathological role of miR-31-5p in chronic constriction injury (CCI) -induced neuropathic pain mouse models. METHODS: We used CCI surgery to establish mouse neuropathic pain model. Behavioral tests were performed to evaluate pain sensitivity of mice. Expressions of miR-31-5p and inflammatory cytokines in dorsal root ganglion (DRG) were examined by polymerase chain reaction. Animals or cells were received with/without miR-31-5p mimic or inhibitor to investigate its role in neuropathic pain. The mechanism of miR-31-5p was assayed using western blotting, immunofluorescence staining and dual-luciferase reporter assay. RESULTS: We found that CCI led to a significant decrease in miR-31-5p levels. Knockout of miR-31-5p and administration of miPEP31 exacerbated pain in C57BL/6 mice. Meanwhile, miR-31-5p overexpression increased the paw withdrawal threshold and latency. TRAF6 is one of the target gene of miR-31-5p, which can trigger a complex inflammatory response. TRAF6 was associated with pain and that reducing the DRG expression of TRAF6 could alleviate pain. In addition, miR-31-5p overexpression inhibited the TRAF6 expression and reduced the neuroinflammatory response. CONCLUSIONS: All the results reveal that miR-31-5p could potentially alleviate pain in CCI mouse models by inhibiting the TRAF6 mediated neuroinflammatory response. MiR-31-5p upregulation is highlighted here as new target for CCI treatment.


Asunto(s)
MicroARNs , Neuralgia , Animales , Ratones , Inflamación/genética , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Neuralgia/genética , Factor 6 Asociado a Receptor de TNF/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA