RESUMEN
Natural killer (NK) cells are the key immune effectors with the ability to mediate selection and differentiation of a number of different cancer stem cells/undifferentiated tumors via lysis, and secreted or membrane-bound interferon (IFN)-γ and tumor necrosis factor (TNF)-α, respectively, leading to curtailment of tumor growth and metastasis. In this review, we present an overview of our recent findings on the biology and significance of NK cells in selection and differentiation of stem-like tumors using in vitro and in vivo studies conducted in humanized-BLT mice and in cancer patients. In addition, we present current advances in NK cell expansion and therapeutic delivery, and discuss the utility of allogeneic supercharged NK cells in the treatment of cancer patients. Moreover, we discuss the potential loss of NK cell numbers and function at the neoplastic and pre-neoplastic stages of tumorigenesis in induction and progression of pancreatic cancer. Therefore, because of their indispensable role in targeting cancer stem-like/undifferentiated tumors, NK cells should be placed high in the armamentarium of tumor immunotherapy. A combination of allogeneic supercharged NK cells with other immunotherapeutic strategies such as oncolytic viruses, antibody-dependent cellular cytotoxicity (ADCC)-inducing antibodies, checkpoint inhibitors, chimeric antigen receptor (CAR) T cells, CAR NK cells, and chemotherapeutic and radiotherapeutic strategies can be used for the ultimate goal of tumor eradication.
RESUMEN
Abstract: Background and Aims: We have previously demonstrated that the stage of differentiation of tumors has profound effect on the function of NK cells, and that stem-like/poorly differentiated tumors were preferentially targeted by the NK cells. Therefore, in this study we determined the role of super-charged NK cells in immune mobilization, lysis, and differentiation of stem-like/undifferentiated tumors implanted in the pancreas of humanized-BLT (hu-BLT) mice fed with or without AJ2 probiotics. The phenotype, growth rate and metastatic potential of pancreatic tumors differentiated by the NK cells (NK-differentiated) or patient derived differentiated or stem-like/undifferentiated pancreatic tumors were investigated. Methods: Pancreatic tumor implantation was performed in NSG and hu-BLT mice. Stage of differentiation of tumors was determined using our published criteria for well-differentiated tumors exhibiting higher surface expression of MHC- class I, CD54, and PD-L1 (B7H1) and lower expression of CD44 receptors. The inverse was seen for poorly-differentiated tumors. Results: Stem-like/undifferentiated pancreatic tumors grew rapidly and formed large tumors and exhibited lower expression of above-mentioned differentiation antigens in the pancreas of NSG and hu-BLT mice. Unlike stem-like/undifferentiated tumors, NK-differentiated MP2 (MiaPaCa-2) tumors or patient-derived differentiated tumors were not able to grow or grew smaller tumors, and were unable to metastasize in NSG or hu-BLT mice, and they were susceptible to chemotherapeutic drugs. Stem-like/undifferentiated pancreatic tumors implanted in the pancreas of hu-BLT mice and injected with super-charged NK cells formed much smaller tumors, proliferated less, and exhibited differentiated phenotype. When differentiation of stem-like tumors by the NK cells was prevented by the addition of antibodies to IFN-γ and TNF-α, tumors grew rapidly and metastasized, and they remained resistant to chemotherapeutic drugs. Greater numbers of immune cells infiltrated the tumors of NK-injected and AJ2-probiotic bacteria-fed mice. Moreover, increased IFN-γ secretion in the presence of decreased IL-6 was seen in tumors resected and cultured from NK-injected and AJ2 fed mice. Tumor-induced decreases in NK cytotoxicity and IFN-γ secretion were restored/increased within PBMCs, spleen, and bone marrow when mice received NK cells and were fed with AJ2. Conclusion: NK cells prevent growth of pancreatic tumors through lysis and differentiation, thereby curtailing the growth and metastatic potential of stem-like/undifferentiated-tumors.
RESUMEN
Therapeutic role of NK cells in solid tumors was challenged previously even though their role in hematological malignancies has clearly been established. Furthermore, functions and numbers of NK cells are greatly suppressed in oral cancer patients necessitating effective future NK immunotherapeutic strategies to aid in the control of disease. The humanized-BLT (hu-BLT) mice were used to implant stem-like/undifferentiated oral tumors to study the role of super-charged NK cells with and without feeding with AJ2 probiotic bacteria. Implanted CSC/undifferentiated tumors resected from NK-injected mice exhibited differentiated phenotype, grew slowly, and did not cause weight loss, whereas those from tumor-bearing mice without NK-injection remained relatively more stem-like/poorly-differentiated, grew faster, and caused significant weight loss. Moreover, in vitro NK-differentiated tumors were sensitive to chemotherapeutic drugs, and when implanted in the oral-cavity grew no or very small tumors in mice. When NK-mediated differentiation of tumors was blocked by IFN-γ and TNF-α antibodies before implantation, tumors grew rapidly, remained stem-like/poorly-differentiated and became resistant to chemotherapeutic drugs. Loss of NK cytotoxicity and decreased IFN-γ secretion in tumor-bearing mice in PBMCs, splenocytes, bone marrow derived immune cells and enriched NK cells was restored by the injection of super-charged NK cells with or without feeding with AJ2. Much greater infiltration of CD45+ and T cells were observed in tumors resected from the mice, along with the restored secretion of IFN-γ from purified T cells from splenocytes in NK-injected tumor-bearing mice fed with AJ2 probiotic bacteria. Thus, super-charged NK cells prevent tumor growth by restoring effector function resulting in differentiation of CSCs/undifferentiated-tumors in hu-BLT mice.
RESUMEN
Natural killer (NK) cells are known to target cancer stem cells and undifferentiated tumors. In this paper, we provide a novel strategy for expanding large numbers of super-charged NK cells with significant potential to lyse and differentiate cancer stem cells and demonstrate the differences in the dynamics of NK cell expansion between healthy donors and cancer patients. Decline in cytotoxicity and lower interferon (IFN)-γ secretion by osteoclast (OC)-expanded NK cells from cancer patients correlates with faster expansion of residual contaminating T cells within purified NK cells, whereas healthy donors' OCs continue expanding super-charged NK cells while limiting T cell expansion for up to 60 days. Similar to patient NK cells, NK cells from tumor-bearing BLT-humanized mice promote faster expansion of residual T cells resulting in decreased numbers and function of NK cells, whereas NK cells from mice with no tumor continue expanding NK cells and retain their cytotoxicity. In addition, dendritic cells (DCs) in contrast to OCs are found to promote faster expansion of residual T cells within purified NK cells resulting in the decline in NK cell numbers from healthy individuals. Addition of anti-CD3 mAb inhibits T cell proliferation while enhancing NK cell expansion; however, expanding NK cells have lower cytotoxicity but higher secretion of IFN-γ. Expansion and functional activation of super-charged NK cells by OCs is dependent on interleukin (IL)-12 and IL-15. Thus, in this report, we not only provide a novel strategy to expand super-charged NK cells, but also demonstrate that rapid and sustained expansion of residual T cells within the purified NK cells during expansion with DCs or OCs could be a potential mechanism by which the numbers and function of NK cells decline in cancer patients and in BLT-humanized mice.
RESUMEN
Reprogramming metabolism of tumor cells is a hallmark of cancer. Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumor cells. Previous studies has shown higher levels of LDHA is related with colorectal cancer (CRC), but its role in tumor maintenance and underlying molecular mechanisms has not been established. Here, we investigated miRNAs-induced changes in LDHA expression. We reported that colorectal cancer express higher levels of LDHA compared with adjacent normal tissue. Knockdown of LDHA resulted in decreased lactate and ATP production, and glucose uptake. Colorectal cancer cells with knockdown of LDHA had much slower growth rate than control cells. Furthermore, we found that miR-34a, miR-34c, miR-369-3p, miR-374a, and miR-4524a/b target LDHA and regulate glycolysis in cancer cells. There is a negative correlation between these miRNAs and LDHA expression in colorectal cancer tissues. More importantly, we identified a genetic loci newly associated with increased colorectal cancer progression, rs18407893 at 11p15.4 (in 3'-UTR of LDHA), which maps to the seed sequence recognized by miR-374a. Cancer cells overexpressed miR-374a has decreased levels of LDHA compared with miR-374a-MUT (rs18407893 at 11p15.4). Taken together, these novel findings provide more therapeutic approaches to the Warburg effect and therapeutic targets of cancer energy metabolism.
Asunto(s)
Neoplasias Colorrectales/enzimología , Glucólisis , L-Lactato Deshidrogenasa/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HCT116 , Células HT29 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Ácido Láctico/metabolismo , Ratones Desnudos , MicroARNs/genética , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Carga Tumoral , Regulación hacia ArribaRESUMEN
Because three-dimensional (3D) in vitro models are more accurate than 2D cell culture models and faster and cheaper than animal models, they have become a prospective trend in the biomedical and pharmaceutical fields, especially for personalized and targeted therapies. Because appropriate 3D models can be customized to mimic the in vivo microenvironment wherein various cell populations grow within an intricate but well organized extracellular matrix (ECM), they can accurately recapitulate physiological and pathophysiological progressions. The majority of cancers are carcinomas, which originate from epithelial cells, and dynamically interact with non-malignant cells including stromal cells (fibroblasts), vascular cells (endothelial cells and pericytes), immune cells (macrophages and mast cells), and the ECM. Employing a tumor monoclonal colony, tumor xenograft or patient cancer biopsy into an in vivo-like microenvironment, the native signaling pathways, cell-cell and cell-matrix interactions, and cell phenotypes are preserved and our fluorescent phenotypic 3D co-culture platforms can then accurately recapitulate the tumor in vivo scenario including tumor induced angiogenesis, tumor growth, and metastasis. In this paper, we describe a robust and standardized method to co-culture a tumor colony or biopsy with different cell populations, e.g., endothelial cells, immune cells, pericytes, etc. The procedures for recovering cells from the co-culture for molecular analyses, imaging, and analyzing are also described. We selected ECM solubilized extract derived from Engelbreth-Holm-Swam sarcoma cells. Because the 3D co-culture platforms can provide drug chemosensitivity data within 9 days that is equivalent to the results generated from mouse tumor xenograft models in 50 days, the 3D co-culture platforms are more accurate, efficient, and cost-effective and may replace animal models in the near future to predict drug efficacy, personalize therapies, prevent drug resistance, and improve the quality of life.
RESUMEN
The gut hormone apelin is a major therapeutic focus for several diseases involving inflammation and aberrant cell growth. We investigated whether apelin-36 contained alternative bioactive peptides associated with normal physiology or disease. Amino acid sequence analysis of apelin-36 identified an amidation motif consistent with the formation of a secondary bioactive peptide (SCNH2). SCNH2 is proven to be mitogenic and chemotactic in normal/malignant cells and augments angiogenesis via a PTX-resistant/CT-X-sensitive G protein-coupled receptor (GPCR). Notably, SCNH2 is substantially more potent and sensitive than apelin-13 and vascular endothelial growth factor-A. Endogenous SCNH2 is highly expressed in human tumors and placenta and in mouse embryonic tissues. Our findings demonstrate that SCNH2 is a new apelinergic member with critical pluripotent roles in angiogenesis related diseases and embryogenesis via a non-APJ GPCR.
RESUMEN
We have developed novel phenotypic fluorescent three-dimensional co-culture platforms that efficiently and economically screen anti-angiogenic/anti-metastatic drugs on a high-throughput scale. Individual cell populations can be identified and isolated for protein/gene expression profiling studies and cellular movement/interactions can be tracked by time-lapse cinematography. More importantly, these platforms closely parallel the in vivo angiogenic and metastatic outcomes of a given tumor xenograft in the nude mouse model but, unlike in vivo models, our co-culture platforms produce comparable results in five to nine days. Potentially, by incorporating cancer patient biopsies, the co-culture platforms should greatly improve the effectiveness and efficiency of personalized chemotherapy.
RESUMEN
Synthetic zinc finger nucleases (ZFNs) are useful for the improvement of site directed integration of foreign gene into vertebrate chromosomes. To facilitate site-directed integration of foreign genes into the 3'-untranslated region of the chicken ovalbumin gene, we have constructed ZFN expression vectors using Zinc Finger Consortium Vector Kits and tested the functionality of these ZFN constructs. Coding sequences for 6 zinc fingers were assembled following the modular assembly method. The zinc finger assembly was fused to two FokI catalytic domains. Various configurations of linker regions between domains were tested for their influence on enzymatic activity, using plasmid substrate containing the target sequence. Results indicated that ZFN with an elongated linker between two nuclease domains had a high catalytic activity.
Asunto(s)
Regiones no Traducidas 3' , Clonación Molecular/métodos , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Ovalbúmina/genética , Dedos de Zinc/genética , Animales , Animales Modificados Genéticamente/genética , Secuencia de Bases , Dominio Catalítico , Pollos , Electroforesis en Gel de Agar , Marcación de Gen , Datos de Secuencia Molecular , Alineación de SecuenciaRESUMEN
Adrenomedullin (AM) and gastrin releasing peptide (GRP) are neuroendocrine peptides that have been previously implicated as regulators of angiogenesis and lymphangiogenesis. Using an immortalized human dermal microvascular lymphatic endothelial cell line stably transfected with red fluorescent protein (LEC/RFP), we demonstrate the ability of AM and GRP to augment tube formation complexity of this target cell in a dose-dependent manner. Maximum tube density was initiated at 1 nM for both peptides, and as concentrations exceeded 10 nM a decrease in tube formation was noted, hence following a classic rise/fall biological response curve. In addition, we show that appropriate small molecule mimetics to neutralizing monoclonal antibodies of AM or GRP, at 1 microM concentration, can function to either inhibit (antagonist) or enhance (super agonist) peptide-induced tube formation of LEC/RFP. Our small molecule reagents by themselves have no activity, but in the presence of their respective peptides can mediate a positive or negative response, hence the super agonist designation. These compounds represent new regulatory drugs of the lymphatic system with possible patient application in the clinical management of edema and metastatic disease.
Asunto(s)
Adrenomedulina/farmacología , Movimiento Celular/efectos de los fármacos , Endotelio Linfático/efectos de los fármacos , Péptido Liberador de Gastrina/farmacología , Linfangiogénesis/efectos de los fármacos , Preparaciones Farmacéuticas/metabolismo , Adrenomedulina/química , Adrenomedulina/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Proliferación Celular , Células Cultivadas , Dermis/citología , Dermis/efectos de los fármacos , Dermis/metabolismo , Endotelio Linfático/citología , Endotelio Linfático/metabolismo , Péptido Liberador de Gastrina/química , Péptido Liberador de Gastrina/inmunología , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Bibliotecas de Moléculas PequeñasRESUMEN
Despite its early discovery and high sequence homology to the other VEGF family members, the biological functions of VEGF-B remain poorly understood. We revealed here a novel function for VEGF-B as a potent inhibitor of apoptosis. Using gene expression profiling of mouse primary aortic smooth muscle cells, and confirming the results by real-time PCR using mouse and rat cell lines, we showed that VEGF-B inhibited the expression of genes encoding the proapoptotic BH3-only proteins and other apoptosis- and cell death-related proteins, including p53 and members of the caspase family, via activation of VEGFR-1. Consistent with this, VEGF-B treatment rescued neurons from apoptosis in the retina and brain in mouse models of ocular neurodegenerative disorders and stroke, respectively. Interestingly, VEGF-B treatment at the dose effective for neuronal survival did not cause retinal neovascularization, suggesting that VEGF-B is the first member of the VEGF family that has a potent antiapoptotic effect while lacking a general angiogenic activity. These findings indicate that VEGF-B may potentially offer a new therapeutic option for the treatment of neurodegenerative diseases.
Asunto(s)
Apoptosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Factor B de Crecimiento Endotelial Vascular/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Animales , Células Cultivadas , Femenino , Humanos , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Retina/metabolismoRESUMEN
The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 microg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker.
Asunto(s)
Blastocisto/fisiología , Técnicas de Transferencia Nuclear , Animales , Animales Modificados Genéticamente , Bovinos , Femenino , Genes Reporteros , Células de la Granulosa/citología , Oocitos/citología , Oocitos/fisiología , Mapeo RestrictivoRESUMEN
This work describes the effects of a commercial polychlorinated biphenyl (PCB) mixture, Aroclor 1254, as well as 17beta-oestradiol (E2) and testosterone on numbers and histomorphological changes of primordial germ cells (PGCs) in gonadal regions of Day 5 Hyline chicken embryos. The oestrogen receptor antagonist, clomiphen, alone or with PCBs was used in an attempt to protect the developing gonad from oestrogen-like effects of chemical PCBs. The results were as follows: (i) PCBs delayed embryonic development independently of dose (1 microg/egg, P<0.05; 10 microg/egg, P<0.01; 100 microg/egg, P<0.001 v. the control) and caused a dose-independent increase in mortality compared with the control group (10 microg/egg, P<0.01; 100 microg/egg, P<0.05); maximal mortality was observed in the 1 microg/egg group (P<0.001); (ii) PCBs decreased PGC numbers dose dependently (P<0.001) and caused a swollen nucleus with hyperchromatism (pyknosis) or cytoplasm vacuolation as signs of gonadal PGC degeneration in all PCB groups, or even complete disappearance in the 100 microg/egg group; (iii) after PCB treatment, the index of gonadal lesion increased significantly with the decrease of gonadal PGC number (1, 10 and 100 microg/egg, P<0.001); (iv) there were no observed effects of E2, testosterone and clomiphen on PGCs in the experiments; and (v) clomiphen failed to block the damaging effects of PCBs. These results suggest that the adverse effects of PCBs on chicken gonadal and germ cell development were initiated during the early stages of incubation through direct toxic effects, rather than through oestrogen-mimicking actions. As PGC numbers in the gonads decrease and the index of gonadal lesion increases, one may expect reproductive function to be compromised.
Asunto(s)
Embrión de Pollo/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Bifenilos Policlorados/envenenamiento , Animales , Recuento de Células , Embrión de Pollo/crecimiento & desarrollo , Clomifeno/farmacología , Relación Dosis-Respuesta a Droga , Estradiol/farmacología , Antagonistas de Estrógenos/farmacología , Células Germinativas/citología , Gónadas/embriología , Testosterona/farmacología , Factores de TiempoRESUMEN
Polychlorinated biphenyls (PCBs) are worldwide persistent pollutants that have produced detrimental effects on endocrine function and reproduction in a variety of species. The present study revealed effects of PCBs on gonadal development and functions in chickens of different ages. Aroclor 1254 (0-100 microg/egg) was injected into Hyline chicken eggs before incubation. The adult chickens received Aroclor 1254 by gavage (50 mg/kg BW). It was observed that in day 5 embryos, PCBs resulted in a dose-dependent decrease of primordial germ cell (PGC) numbers, and caused PGCs pyknosis and vacuolation. Clomiphen failed to block the effects of PCBs. In the newly hatched chicken, PCBs induced a marked decrease in area of the transverse sections, diameter and relative area of the testicular tubules. The differentiation of germ cells was retarded after PCB treatment. In contrast, the area of the left ovarian transverse sections, the thickness of ovarian cortex and the number of oocytes increased dramatically in the female chickens after PCB exposure. In the adult chickens, PCBs caused no significant changes in body weight, respiration, heart rate, body temperature, red and white blood cell number, but induced a marked decrease in the testicular weight, and severe damage of the seminiferous tubules. The number of the spermatogenic cells and serum testosterone level were decreased significantly by PCBs. On the contrary, in the laying hens there was no significant effect of PCB on egg quality except a slight decrease in egg weight. These results indicated that PCBs exerted its disrupting effects on chicken reproduction with a sex and stage-related pattern, and in vivo disruption of gonadal development represents a possible model for risk assessment of environmental endocrine disrupters by in ovo treatment.