Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 715
Filtrar
1.
Adv Mater ; : e2404901, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723206

RESUMEN

Intrinsic characteristics of microorganisms, including non-specific metabolism sites, toxic byproducts, and uncontrolled proliferation constrain their exploitation in medical applications such as tumor therapy. Here, the authors report an engineered biohybrid that can efficiently target cancerous sites through a pre-determined metabolic pathway to enable precise tumor ablation. In this system, DH5α Escherichia coli is engineered by the introduction of hypoxia-inducible promoters and lactate oxidase genes, and further surface-armored with iron-doped ZIF-8 nanoparticles. This bioengineered E. coli can produce and secrete lactate oxidase to reduce lactate concentration in response to hypoxic tumor microenvironment, as well as triggering immune activation. The peroxidase-like functionality of the nanoparticles extends the end product of the lactate metabolism, enabling the conversion of hydrogen peroxide (H2O2) into highly cytotoxic hydroxyl radicals. This, coupled with the transformation of tirapazamine loaded on nanoparticles to toxic benzotriazinyl, culminates in severe tumor cell ferroptosis. Intravenous injection of this biohybrid significantly inhibits tumor growth and metastasis.

2.
Food Res Int ; 187: 114327, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763631

RESUMEN

The mechanical process has a widely usage in large-scale high-temperature Daqu (HTD) enterprises, however, the quality of the mechanical HTD is gapped with the HTD by traditional process. Currently, the understanding of the mechanism behind this phenomenon is still over-constrained. To this end, the discrepancies in fermentation parameters, enzymatic characteristics, microbial assembly and succession patterns, metabolic phenotypes were compared between traditional HTD and mechanical HTD in this paper. The results showed that mechanical process altered the temperature ramping procedure, resulting in a delayed appearance of the peak temperature. This alteration shifted the assembly pattern of the initial bacterial community from determinism to stochasticity, while having no impact on the stochastic assembly pattern of the fungal community. Concurrently, mechanical pressing impeded the accumulation of arginase, tetramethylpyrazine, trimethylpyrazine, 2-methoxy-4-vinylphenol, and butyric acid, as the target dissimilarities in metabolism between traditional HTD and mechanical HTD. Pearson correlation analysis combined with the functional prediction further demonstrated that Bacillus, Virgibacillus, Oceanobacillus, Kroppenstedtia, Lactobacillus, and Monascus were mainly contributors to metabolic variances. The Redundancy analysis (RDA) of fermented environmental factors on functional ASVs indicated that high temperature, high acid and low moisture were key positive drivers on the microbial metabolism for the characteristic flavor in HTD. Based on these results, heterogeneous mechanisms between traditional HTD and mechanical HTD were explored, and controllable metabolism targets were as possible strategies to improve the quality of mechanical HTD.


Asunto(s)
Fermentación , Microbiología de Alimentos , Calor , Manipulación de Alimentos/métodos , Fenotipo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Hongos/metabolismo
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732144

RESUMEN

DNA methylation is a form of epigenetic regulation, having pivotal parts in controlling cellular expansion and expression levels within genes. Although blood DNA methylation has been studied in humans and other species, its prominence in cattle is largely unknown. This study aimed to methodically probe the genomic methylation map of Xinjiang brown (XJB) cattle suffering from bovine respiratory disease (BRD), consequently widening cattle blood methylome ranges. Genome-wide DNA methylation profiling of the XJB blood was investigated through whole-genome bisulfite sequencing (WGBS). Many differentially methylated regions (DMRs) obtained by comparing the cases and controls groups were found within the CG, CHG, and CHH (where H is A, T, or C) sequences (16,765, 7502, and 2656, respectively), encompassing 4334 differentially methylated genes (DMGs). Furthermore, GO/KEGG analyses showed that some DMGs were involved within immune response pathways. Combining WGBS-Seq data and existing RNA-Seq data, we identified 71 significantly differentially methylated (DMGs) and expressed (DEGs) genes (p < 0.05). Next, complementary analyses identified nine DMGs (LTA, STAT3, IKBKG, IRAK1, NOD2, TLR2, TNFRSF1A, and IKBKB) that might be involved in the immune response of XJB cattle infected with respiratory diseases. Although further investigations are needed to confirm their exact implication in the involved immune processes, these genes could potentially be used for a marker-assisted selection of animals resistant to BRD. This study also provides new knowledge regarding epigenetic control for the bovine respiratory immune process.


Asunto(s)
Metilación de ADN , Predisposición Genética a la Enfermedad , Bovinos , Animales , Epigénesis Genética , Enfermedades de los Bovinos/genética , Complejo Respiratorio Bovino/genética
4.
J Chromatogr A ; 1726: 464975, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735118

RESUMEN

In conventional chromatographic ligand screening, underperforming ligands are often dismissed. However, this practice may inadvertently overlook potential opportunities. This study aims to investigate whether these underperforming ligands can be repurposed as valuable assets. Hydrophobic charge-induction chromatography (HCIC) is chosen as the validation target for its potential as an innovative chromatographic mode. A novel dual-ligand approach is employed, combining two suboptimal ligands (5-Aminobenzimidazole and Tryptamine) to explore enhanced performance and optimization prospects. Various dual-ligand HCIC resins with different ligand densities were synthesized by adjusting the ligand ratio and concentration. The resins were characterized to assess appearance, functional groups, and pore features using SEM, FTIR, and ISEC techniques. Performance assessments were conducted using single-ligand mode resins as controls, evaluating the selectivity against human immunoglobulin G and human serum albumin. Static adsorption experiments were performed to understand pH and salt influence on adsorption. Breakthrough experiments were conducted to assess dynamic adsorption capacity of the novel resin. Finally, chromatographic separation using human serum was performed to evaluate the purity and yield of the resin. Results indicated that the dual-ligand HCIC resin designed for human antibodies demonstrates exceptional selectivity, surpassing not only single ligand states but also outperforming certain high-performing ligand types, particularly under specific salt and pH conditions. Ultimately, a high yield of 83.9 % and purity of 96.7 % were achieved in the separation of hIgG from human serum with the dual-ligand HCIC, significantly superior to the single-ligand resins. In conclusion, through rational design and proper operational conditions, the dual-ligand mode can revitalize underutilized ligands, potentially introducing novel and promising chromatographic modes.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Inmunoglobulina G , Ligandos , Humanos , Adsorción , Inmunoglobulina G/química , Inmunoglobulina G/sangre , Triptaminas/química , Cromatografía Liquida/métodos , Bencimidazoles/química , Concentración de Iones de Hidrógeno
5.
BMC Plant Biol ; 24(1): 256, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594627

RESUMEN

BACKGROUND: Climate change has led to severe cold events, adversely impacting global crop production. Eggplant (Solanum melongena L.), a significant economic crop, is highly susceptible to cold damage, affecting both yield and quality. Unraveling the molecular mechanisms governing cold resistance, including the identification of key genes and comprehensive transcriptional regulatory pathways, is crucial for developing new varieties with enhanced tolerance. RESULTS: In this study, we conducted a comparative analysis of leaf physiological indices and transcriptome sequencing results. The orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted peroxidase (POD) activity and soluble protein as crucial physiological indicators for both varieties. RNA-seq data analysis revealed that a total of 7024 and 6209 differentially expressed genes (DEGs) were identified from variety "A" and variety "B", respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of DEGs demonstrated that the significant roles of starch and sucrose metabolism, glutathione metabolism, terpenoid synthesis, and energy metabolism (sucrose and starch metabolism) were the key pathways in eggplant. Weighted gene co-expression network analysis (WGCNA) shown that the enrichment of numerous cold-responsive genes, pathways, and soluble proteins in the MEgrep60 modules. Core hub genes identified in the co-expression network included POD, membrane transporter-related gene MDR1, abscisic acid-related genes, growth factor enrichment gene DELLA, core components of the biological clock PRR7, and five transcription factors. Among these, the core transcription factor MYB demonstrated co-expression with signal transduction, plant hormone, biosynthesis, and metabolism-related genes, suggesting a pivotal role in the cold response network. CONCLUSION: This study integrates physiological indicators and transcriptomics to unveil the molecular mechanisms responsible for the differences in cold tolerance between the eggplant cold-tolerant variety "A" and the cold-sensitive variety "B". These mechanisms include modulation of reactive oxygen species (ROS), elevation in osmotic carbohydrate and free proline content, and the expression of terpenoid synthesis genes. This comprehensive understanding contributes valuable insights into the molecular underpinnings of cold stress tolerance, ultimately aiding in the improvement of crop cold tolerance.


Asunto(s)
Solanum melongena , Transcriptoma , Solanum melongena/genética , Solanum melongena/metabolismo , Fisiología Comparada , Perfilación de la Expresión Génica/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta al Choque por Frío/genética , Almidón/metabolismo , Sacarosa/metabolismo , Terpenos/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Immunology ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618976

RESUMEN

Despite progress in cancer immunotherapy, ovarian cancer (OC) prognosis continues to be disappointing. Recent studies have shed light on how not just tumour cells, but also the complex tumour microenvironment, contribute to this unfavourable outcome of OC immunotherapy. The complexities of the immune microenvironment categorize OC as a 'cold tumour'. Nonetheless, understanding the precise mechanisms through which the microenvironment influences the effectiveness of OC immunotherapy remains an ongoing scientific endeavour. This review primarily aims to dissect the inherent characteristics and behaviours of diverse cells within the immune microenvironment, along with an exploration into its reprogramming and metabolic changes. It is expected that these insights will elucidate the operational dynamics of the immune microenvironment in OC and lay a theoretical groundwork for improving the efficacy of immunotherapy in OC management.

7.
Int J Biol Sci ; 20(6): 1992-2007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617547

RESUMEN

Objective: Osteoarthritis (OA) is the most prominent chronic arthritic disease, affecting over 3 billion people globally. Synovial macrophages, as immune cells, play an essential role in cartilage damage in OA. Therefore, regulating macrophages is crucial for controlling the pathological changes in OA. Triggering receptor expressed on myeloid cells 2 (TREM2), as expressed on immune cell surfaces, such as macrophages and dendritic cells, has suppressed inflammation and regulated M2 macrophage polarization but demonstrated an unknown role in synovial macrophage polarization in OA. This study aimed to investigate TREM2 expression downregulation in OA mice macrophages. Furthermore, the expression trend of TREM2 was associated with polarization-related molecule expression in macrophages of OA mice. Results: We used TREM2 knockout (TREM2-KO) mice to observe that TREM2 deficiency significantly exacerbated the joint inflammation response in OA mice, thereby accelerating disease progression. Separating macrophages and chondrocytes from TREM2-KO mice and co-cultivating them significantly increased chondrocyte apoptosis and inhibited chondrocyte proliferation. Further, TREM2 deficiency also significantly enhanced phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway activation, increasing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 3 (CXCL3) expression. Furthermore, NF-κB signaling pathway inhibition significantly suppressed arthritis inflammation in OA mice, thereby effectively alleviating TREM2 deficiency-related adverse effects on chondrocytes. Notably, knocking down CXCL3 of TREM2-KO mice macrophages significantly inhibits inflammatory response and promotes chondrocyte proliferation. Intravenous recombinant TREM2 protein (soluble TREM2, sTREM2) injection markedly promotes macrophage polarization from M1 to M2 and improves the joint tissue pathology and inflammatory response of OA. Conclusion: Our study reveals that TREM2 promotes macrophage polarization from M1 to M2 during OA by NF-κB/CXCL3 axis regulation, thereby improving the pathological state of OA.


Asunto(s)
FN-kappa B , Osteoartritis , Animales , Ratones , Quimiocinas CXC , Inflamación , Glicoproteínas de Membrana/genética , Osteoartritis/genética , Fosfatidilinositol 3-Quinasas , Receptores Inmunológicos/genética , Transducción de Señal/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-38573002

RESUMEN

Aims: Erythropoiesis is controlled by several factors, including oxygen level under different circumstances. However, the role of hypoxia in erythroid differentiation and the underlying mechanisms are poorly understood. We studied the effect and mechanism of hypoxia on erythroid differentiation of K562 cells and observed the effect of hypoxia on early erythropoiesis of zebrafish. Results: Compared with normal oxygen culture, both hemin-induced erythroid differentiation of K562 cells and the early erythropoiesis of zebrafish were inhibited under hypoxic treatment conditions. Hypoxia-inducible factor 1 alpha (HIF1α) plays a major role in the response to hypoxia. Here, we obtained a stable HIF1α knockout K562 cell line using the CRISPR-Cas9 technology and further demonstrated that HIF1α knockout promoted hemin-induced erythroid differentiation of K562 cells under hypoxia. We demonstrated an HIF1-mediated induction of the nuclear factor interleukin-3 (NFIL3) regulated in K562 cells under hypoxia. Interestingly, a gradual decrease in NFIL3 expression was detected during erythroid differentiation of erythropoietin-induced CD34+ hematopoietic stem/progenitor cells (HSPCs) and hemin-induced K562 cells. Notably, erythroid differentiation was inhibited by enforced expression of NFIL3 under normoxia and was promoted by the knockdown of NFIL3 under hypoxia in hemin-treated K562 cells. In addition, a target of NFIL3, pim-1 proto-oncogene, serine/threonine kinase (PIM1), was obtained by RNA microarray after NFIL3 knockdown. PIM1 can rescue the inhibitory effect of NFIL3 on hemin-induced erythroid differentiation of K562 cells. Innovation and Conclusion: Our findings demonstrate that the HIF1α-NFIL3-PIM1 signaling axis plays an important role in erythroid differentiation under hypoxia. These results will provide useful clues for preventing the damage of acute hypoxia to erythropoiesis.

9.
J Mater Chem B ; 12(19): 4642-4654, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38592460

RESUMEN

The therapeutic efficacy of Fenton or Fenton-like nanocatalysts is usually restricted by the inappropriate pH value and limited concentration of hydrogen peroxide (H2O2) at the tumor site. Herein, calcium carbonate (CaCO3)-mineralized cobalt silicate hydroxide hollow nanocatalysts (CSO@CaCO3, CC) were synthesized and loaded with curcumin (CCC). This hybrid system can simultaneously realize nanocatalytic therapy, chemotherapy and calcium overload. With the stabilization of liposomes, CCC is able to reach the tumor site smoothly. The CaCO3 shell first degrades in an acidic tumor environment, releasing Cur and Ca2+, and the pH value of the tumor is increased simultaneously. Then the exposed CSO catalyzes the Fenton-like reaction to convert H2O2 into ˙OH and enhances the cytotoxicity of curcumin (Cur) by catalytically oxidizing it to a ˙Cur radical. Curcumin not only induces the chemotherapy effect but also serves as a nucleophilic ligand and an electron donor in the catalytic system, enhancing the Fenton-like activity of CCC by electron transfer. In addition, calcium overload also amplifies the efficacy of ROS-based therapy. In vitro and in vivo results show that CCC exhibited an excellent synergistic tumor inhibition effect without any clear side effect. This work proposes a novel concept of nanocatalytic therapy/chemotherapy synergistic mechanism by the ligand-induced enhancement of Fenton-like catalytic activity, and inspires the construction of combined therapeutic nanoplatforms and multifunctional nanocarriers for drug and ion delivery in the future.


Asunto(s)
Antineoplásicos , Calcio , Cobalto , Curcumina , Nanopartículas , Curcumina/química , Curcumina/farmacología , Cobalto/química , Cobalto/farmacología , Humanos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones , Calcio/química , Calcio/metabolismo , Nanopartículas/química , Catálisis , Carbonato de Calcio/química , Ligandos , Tamaño de la Partícula , Ratones Endogámicos BALB C , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Femenino , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
10.
Chem Sci ; 15(15): 5573-5580, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638207

RESUMEN

Palladium-catalyzed enantioselective domino Heck/intramolecular C-H functionalization reaction, as a valuable strategy for creating molecular diversity, has remained a prominent challenge. Here, we describe a Pd/XuPhos catalyst for asymmetric domino Heck/intermolecular C-H alkylation of unactivated alkenes with diverse polyfluoro- and heteroarenes in a highly chemo- and enantioselective manner. This process enables efficient synthesis of various dihydrobenzofurans, indolines and indanes, which are of interest in pharmaceutical research and other areas. Late-stage modifications of the core structures of natural products are also well showcased. Moreover, synthetic transformations create a valuable platform for preparing a series of functionalized molecules. Several control experiments for mechanistic study are conducted to pursue a further understanding of the reaction.

11.
BMC Health Serv Res ; 24(1): 406, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561719

RESUMEN

BACKGROUND: The COVID-19 pandemic has presented significant challenges to the already over-stretched healthcare system in the United Kingdom (UK). These challenges are particularly pronounced for people living with the novel condition of Long COVID (LC) as they often face persistent and fluctuating symptoms, encountering prolonged uncertainty when seeking medical support. Despite a growing understanding of the healthcare challenges associated with LC, existing qualitative studies have predominantly focused on individual experiences rather than examining the structural aspects of healthcare. METHODS: A longitudinal qualitative study with 80 participants and 12 healthcare practitioners was conducted in the UK to explore the healthcare experiences of those with LC. In total, 178 interviews (with attrition) were collected across two rounds, from November 2021 to March 2022, and from June to October 2022. RESULTS: Embracing a person-centred framework that recognises and nurtures interconnected individual, relational, and existential needs, we investigated healthcare experiences related to LC across primary, secondary, and specialist integrated care. Using this perspective, we identified three overarching themes. Theme 1 addresses the persistent hurdle of accessing primary care as the initial point of contact for LC healthcare; Theme 2 underscores the complexity of navigating secondary care; and Theme 3 encapsulates the distinctive challenges of developing LC integrated care. These themes are interlinked, as people with LC often had to navigate or struggle between the various systems, with practitioners seeking to collaborate across the breadth of their professional responsibilities. CONCLUSION: From a person-centred approach, we were able to identify the needs of those affected by lasting LC symptoms and comprehend how health services intricately influence these needs. The focus on healthcare systems also captures the nuanced impact that continuing healthcare struggles can have on people's identity. As such, our findings provide evidence to inform a more effective and sustainable delivery of person-centred care for people with LC across various healthcare settings and over time.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Pandemias , COVID-19/epidemiología , Reino Unido/epidemiología , Atención a la Salud , Investigación Cualitativa
13.
Nat Commun ; 15(1): 3129, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605050

RESUMEN

The essence of difference between hemostasis and thrombosis is that the clotting reaction is a highly fine-tuned process. Vascular protein disulfide isomerase (PDI) represents a critical mechanism regulating the functions of hemostatic proteins. Herein we show that histidine-rich glycoprotein (HRG) is a substrate of PDI. Reduction of HRG by PDI enhances the procoagulant and anticoagulant activities of HRG by neutralization of endothelial heparan sulfate (HS) and inhibition of factor XII (FXIIa) activity, respectively. Murine HRG deficiency (Hrg-/-) leads to delayed onset but enhanced formation of thrombus compared to WT. However, in the combined FXII deficiency (F12-/-) and HRG deficiency (by siRNA or Hrg-/-), there is further thrombosis reduction compared to F12-/- alone, confirming HRG's procoagulant activity independent of FXIIa. Mutation of target disulfides of PDI leads to a gain-of-function mutant of HRG that promotes its activities during coagulation. Thus, PDI-HRG pathway fine-tunes thrombosis by promoting its rapid initiation via neutralization of HS and preventing excessive propagation via inhibition of FXIIa.


Asunto(s)
Proteína Disulfuro Isomerasas , Proteínas , Trombosis , Animales , Ratones , Disulfuros , Factor XII/metabolismo , Heparitina Sulfato , Proteína Disulfuro Isomerasas/genética , Proteínas/metabolismo , Trombosis/genética , Trombosis/metabolismo
14.
Dig Dis Sci ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637456

RESUMEN

PURPOSE: Colorectal cancer (CRC) is a very common malignancy of the digestive system. Despite a variety of treatments including surgery, chemotherapeutic and targeted drugs, the prognosis for patients with CRC is still unsatisfactory and the mortality remains high. Protein phosphorylation plays an essential role in tumorigenesis and progression and is also crucial for protein to act with proper functions. Ferroptosis is found widely involved in various diseases especially tumors as a newly identified programmed cell death. METHODS: In our study, we aimed at PPP2CA as a prospective target which may play a crucial role in CRC progression. In one hand, knockdown of PPP2CA significantly enhanced the malignant phenotype in HCT116. In the other hand, knockdown of PPP2CA significantly enhanced Erastin-induced ferroptosis as well. RESULTS: Specifically, knockdown of PPP2CA in HCT116 significantly increased the relative level of malondialdehyde (MDA), reactive oxygen species (ROS) and Fe2+, and decreased GSH/GSSG ratio after the treatment of certain concentration of Erastin. Besides, we found that the inhibition of PPP2CA further led to the suppression of SCD1 expression in CRC cells in a AMPK-dependent way. CONCLUSION: Ultimately, we conclude that PPP2CA may regulate Erastin-induced ferroptosis through AMPK/SCD1 signaling pathway.

15.
Sci Adv ; 10(16): eadk2350, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640239

RESUMEN

Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2 capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2 capture behavior and transport properties of these electrolytes after CO2 capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2 capture. Quantitative 13C NMR spectra collected at variable temperatures reveal that absorbed CO2 exists as carbamates (RHNCOO- or RR'NCOO-) and carbonate/bicarbonate (CO32-/HCO3-). The transport properties of PEI and NOHM-I-PEI studied using 1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction.

16.
Cancer Med ; 13(7): e6994, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545852

RESUMEN

BACKGROUND: While previous studies have indicated variability in distant metastatic potential among different mismatch repair (MMR) states in colorectal cancer (CRC), their findings remain inconclusive, especially considering potential differences across various ethnic backgrounds. Furthermore, the gene regulatory networks and the underlying mechanisms responsible for these variances in metastatic potential across MMR states have yet to be elucidated. METHODS: We collected 2058 consecutive primary CRC samples from the South West of China and assessed the expression of MMR proteins (MLH1, MSH2, MSH6, and PMS2) using immunohistochemistry. To explore the inconsistencies between different MMR statuses and recurrence, we performed a meta-analysis. To delve deeper, we employed Weighted Gene Co-expression Network Analysis (WGCNA), ClueGo, and iRegulon, pinpointing gene expression networks and key regulatory molecules linked to metastasis and recurrence in CRC. Lastly, both univariate and multivariate Cox regression analyses were applied to determine the impact of core regulatory molecules on metastasis. RESULTS: Of the samples, 8.2% displayed deficient MMR (dMMR), with losses of MLH1 and PSM2 observed in 40.8% and 63.9%, respectively. A unique 24.3% isolated loss of PMS2 without concurrent metastasis was identified, a result that diverges from established literature. Additionally, our meta-analysis further solidifies the reduced recurrence likelihood in dMMR CRC samples compared to proficient MMR (pMMR). Two gene expression networks tied to distant metastasis and recurrence were identified, with a majority of metastasis-related genes located on chromosomes 8 and 18. An IRF1 positive feedback loop was discerned in the metastasis-related network, and IRF1 was identified as a predictive marker for both recurrence-free and distant metastasis-free survival across multiple datasets. CONCLUSION: Geographical and ethnic factors might influence peculiarities in MMR protein loss. Our findings also highlight new gene expression networks and crucial regulatory molecules in CRC metastasis, enhancing our comprehension of the mechanisms driving distant metastasis.


Asunto(s)
Neoplasias Colorrectales , Deficiencia de Proteína , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Reparación de la Incompatibilidad de ADN , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Neoplasias Colorrectales/patología
17.
Front Oncol ; 14: 1320020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444677

RESUMEN

Background: Colorectal cancer (CRC) is considered the most prevalent synchronous malignancy in patients with gastric cancer. This large retrospective study aims to clarify correlations between gastric histopathology stages and risks of specific colorectal neoplasms, to optimize screening and reduce preventable CRC. Methods: Clinical data of 36,708 patients undergoing gastroscopy and colonoscopy from 2005-2022 were retrospectively analyzed. Correlations between gastric and colorectal histopathology were assessed by multivariate analysis. Outcomes of interest included non-adenomatous polyps (NAP), conventional adenomas (CAs), serrated polyps (SPs), and CRC. Statistical analysis used R version 4.0.4. Results: Older age (≥50 years) and Helicobacter pylori infection (HPI) were associated with increased risks of conventional adenomas (CAs), serrated polyps (SPs), non-adenomatous polyps (NAP), and colorectal cancer (CRC). Moderate to severe intestinal metaplasia specifically increased risks of NAP and CAs by 1.17-fold (95% CI 1.05-1.3) and 1.19-fold (95% CI 1.09-1.31), respectively. For CRC risk, low-grade intraepithelial neoplasia increased risk by 1.41-fold (95% CI 1.08-1.84), while high-grade intraepithelial neoplasia (OR 3.76, 95% CI 2.25-6.29) and gastric cancer (OR 4.81, 95% CI 3.25-7.09) showed strong associations. More advanced gastric pathology was correlated with progressively higher risks of CRC. Conclusion: Precancerous gastric conditions are associated with increased colorectal neoplasm risk. Our findings can inform screening guidelines to target high-risk subgroups, advancing colorectal cancer prevention and reducing disease burden.

18.
Heliyon ; 10(5): e27466, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463824

RESUMEN

Objective: Chondrocyte death is the hallmark of cartilage degeneration during osteoarthritis (OA). However, the specific pathogenesis of cell death in OA chondrocytes has not been elucidated. This study aims to validate the role of CDKN1A, a key programmed cell death (PCD)-related gene, in chondrogenic differentiation using a combination of single-cell and bulk sequencing approaches. Design: OA-related RNA-seq data (GSE114007, GSE55235, GSE152805) were downloaded from Gene Expression Omnibus database. PCD-related genes were obtained from GeneCards database. RNA-seq was performed to annotate the cell types in OA and control samples. Differentially expressed genes (DEGs) among those cell types (scRNA-DEGs) were screened. A nomogram of OA was constructed based on the featured genes, and potential drugs targeting the featured genes were predicted. The presence of key genes was confirmed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Western blot (WB), and immunohistochemistry (IHC). Micromass culture and Alcian blue staining were used to determine the effect of CDKN1A on chondrogenesis. Results: Six cell types, namely HomC, HTC, RepC, preFC, FC, and RegC, were annotated in scRNA-seq data. Five featured genes (JUN, CDKN1A, HMGB2, DDIT3, and DDIT4) were screened by multiple biological information analysis methods. TAXOTERE had the highest ability to dock with DDIT3. Functional analysis indicated that CDKN1A was enriched in processes related to collagen catabolism and acts as a positive regulator of autophagy. Additionally, CDKN1A was found to be associated with several KEGG pathways, including those involved in acute myeloid leukemia and autoimmune thyroid disease. CDKN1A was confirmed down-regulated in the joint tissues of OA mouse model and OA model cell. Inhibiting the expression of CDKN1A can significantly suppress the differentiation of OA chondrocytes. Conclusion: Our findings highlight the critical role of CDKN1A in promoting cartilage formation in both in vivo and in vitro and suggest its potential as a therapeutic target for OA treatment.

19.
Nat Commun ; 15(1): 2491, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509076

RESUMEN

Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.


Asunto(s)
Fragaria , Genoma de Planta , Genoma de Planta/genética , Fragaria/genética , Cromatina/genética , Poliploidía , Mapeo Cromosómico
20.
Phys Chem Chem Phys ; 26(10): 8148-8157, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38380536

RESUMEN

Probing the interaction between molecules and protocells is crucial for understanding the passive transport of functional molecules in and out of artificial and real cells. Second-harmonic generation (SHG) has been proven to be a powerful method for analyzing the adsorption and cross-membrane transport of molecules on lipid bilayers. In this study, we used SHG and two-photon fluorescence (TPF) imaging to study the interaction of charged dye molecules (D289) with a lipid vesicle. Unexpectedly, it was observed that the transport of D289 at a relatively high concentration is not as efficient as that at a lower dye concentration. Periodic shrinking of the model protocell and discharging of D289 out from the vesicle were revealed by combined analyses of SHG and TPF images. The response of the vesicle to a surfactant was also analyzed with D289 as a probe. This work demonstrates that the combined SHG and TPF imaging method is a unique approach that can provide detailed information on the interaction of molecules and lipids (both morphology and molecular kinetics). Determining these subtle interfacial kinetics in molecules is important for understanding the mechanism of many biophysical processes occurring on lipids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA