Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chin J Nat Med ; 20(8): 589-600, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36031231

RESUMEN

Recent studies have showed that thrombosis is closely related to leucocytes involved in immunity. Interfering with the binding of leukocyte integrin Mac-1 and platelet GPIbα can inhibit thrombosis without affecting physiological coagulation. Mac-1-GPIbα is proposed as a potential safety target for antithrombotic agents. Guanxinning tablet (GXNT) is an oral Chinese patent medicine used for the treatment of angina pectoris, which contains phenolic acid active ingredients, such as salvianolic acids, ferulic acid, chlorogenic acid, caffeic acid, rosmarinic acid, tanshinol, and protocatechualdehyde. Our previous studies demonstrated that GXN exhibited significant antithrombotic effects, and clinical studies suggested that it did not increase bleeding risk. In addition, GXN exerted a significantly regulatory effect on immune inflammation. In the current study, we intended to evaluate the effects of GXN on bleeding events and explore the safety antithrombotic mechanism of GXN based on leukocyte-platelet interaction. First, we established a gastric ulcer model induced by acetic acid in rats and found that GXN not only did not increase the degree of gastrointestinal bleeding when gastric ulcer occurred, but also had a certain promoting effect on the healing of gastric ulcer. Second, in vitroexperiments showed that after pretreatment with GXN and activation by phorbol 12-myristate-13-acetate (PMA), the adhesion and aggregation of leukocytes with human platelets were reduced. It was also found that GXN reduced the expression and activation of Mac-1 in leucocytes, and inhibited platelet activation due to leukocyte engagement via Mac-1. Overall, the results suggest that GXN may be a safe antithrombotic agent, and its low bleeding risk mechanism is probably related to inhibited leukocyte-platelet aggregation and its interaction target Mac-1-GPIbα.


Asunto(s)
Úlcera Gástrica , Trombosis , Animales , Fibrinolíticos , Humanos , Integrinas , Leucocitos , Antígeno de Macrófago-1 , Ratas , Comprimidos
2.
Eur J Drug Metab Pharmacokinet ; 47(5): 653-665, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35751765

RESUMEN

BACKGROUND AND OBJECTIVES: Guanxinshutong capsules (GXST) are usually used to treat acute myocardial infarction (AMI), and the clinical effect of GXST is significant. However, there have been only a few studies on the pharmacokinetics of GXST against AMI injury. The objective of this study was to investigate the pharmacokinetics of nine bioactive compounds of GXST in normal and AMI rats. METHODS: In this work, a rat model of AMI was established by ligating the left anterior descending coronary artery. The pharmacokinetic parameters of nine bioactive compounds (gallic acid, danshensu, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B and salvianolic acid A, dihydrotanshinone I, cryptotanshinone, and tanshinone IIA) in the plasma of AMI and normal rats were compared under the same dose of GXST by a LC-MS/MS method. Then, we selected P-glycoprotein (P-gp) and some representative cytochrome P450 enzymes (CYPs) for molecular docking to further analyze the interaction between these compounds. RESULTS: The pharmacokinetic studies showed that the area under the concentration-time curve (AUC) and maximum concentration (Cmax) of phenolic acids were relatively large, while the half-life (T½) of tanshinones was longer. Among the nine components, salvianolic acid B in AMI rats had the maximum area under the concentration-time curve (AUC0-∞ = 1961.8 ng·h/mL), which showed a significant difference compared with normal rats (P < 0.05). Tanshinone IIA in AMI rats had the longest half-life (T½ = 10.1 h), and it was markedly longer than that in normal rats (P < 0.01). In addition, compared with the normal group, the AUC, Cmax, T½ , and time to reach Cmax (Tmax) of gallic acid increased significantly in AMI rats (P < 0.05 or P < 0.01). For the molecular docking results, it was found that gallic acid may interact with CYP1A2, CYP2D6, and CYP2C9, while danshensu may interact with CYP2C9. Tanshinones may interact with CYP1A2, CYP2D6, CYP2C9, and P-gp. CONCLUSIONS: The results suggest that the pathological injury caused by AMI has a significant impact on the pharmacokinetic characteristics of some active compounds in GXST, which are conducive to providing a reference and promoting rational clinical drug use.


Asunto(s)
Medicamentos Herbarios Chinos , Infarto del Miocardio , Animales , Cromatografía Liquida , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6 , Medicamentos Herbarios Chinos/farmacocinética , Furanos , Ácido Gálico , Simulación del Acoplamiento Molecular , Infarto del Miocardio/tratamiento farmacológico , Fenantrenos , Quinonas , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
3.
Chin Herb Med ; 14(2): 283-293, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35165529

RESUMEN

Objective: Yupingfeng Powder (YPF), a kind of preventative patent medicine, is chosen for treatment of coronavirus disease 2019 (COVID-19) due to its high frequency application in respiratory tract diseases, such as chronic obstructive pulmonary disease, asthma, respiratory tract infections, and pneumonia, with the advantage of reducing the relapse rate and the severity. However, the active components of YPF and the mechanisms of components affecting COVID-19 are unclear. This study aimed to determine active constituents and elucidate its potential mechanisms. Methods: Ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q/TOF-MS) and liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ-MS) were used to determine the components and absorbable constituents of YPF. Secondly, TCMSP, Drugbank, Swiss and PharmMapper were used to search the targets of absorbable bioactive constituents of YPF, and the targets of COVID-19 were identified based on GeneCards and OMIM databases. STRING database was used to filter the possible inter-protein interactions. Thirdly, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were performed to identify molecular function and systemic involvement of target genes. Results: A total of 61 components of YPF and 36 absorbable constituents were identified through UPLC-Q/TOF-MS. Wogonin, prim-O-glucosylcimifugin, 5-O-methylvisamminol, astragaloside IV and 5-O-methylvisamminol (hydroxylation) were vital constituents for the treatment of COVID-19, and RELA, TNF, IL-6, MAPK14 and MAPK8ere recognized as key targets of YPF. The major metabolic reactions of the absorbed constituents of YPF were demethylation, hydroxylation, sulfation and glucuronidation. GO and KEGG pathway analysis further showed that the most important functions of YPF were T cell activation, response to molecule of bacterial origin, cytokine receptor binding, receptor ligand activity, cytokine activity, IL-17 signaling pathway, Chagas disease, lipid and atherosclerosis, etc. Conclusion: The approach of combining UPLC-Q/TOF-MS with network pharmacology is an effective tool to identify potentially bioactive constituents of YPF and its key targets on treatment of COVID-19.

4.
Bioengineered ; 12(2): 10608-10623, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34747306

RESUMEN

Dexmedetomidine (DEX) has been reported to attenuate cecal ligation perforation (CLP)-stimulated acute lung injury (ALI) by downregulating HMGB1 and RAGE. This study aimed to further investigate the specific mechanisms of RAGE and its potential-related mechanisms of DEX on ALI models in vitro and in vivo. The in vitro and in vivo ALI models were established by lipopolysaccharide treatment in MLE-12 cells and CLP in mice, respectively. The effect of DEX on pathological alteration was investigated by HE staining. Thereafter, the myeloperoxidase (MPO) activity and inflammatory cytokine levels were respectively detected to assess the lung injury of mice using commercial kits. The expression levels of HMGB1, RAGE, NF-κB, and pyroptosis-related molecules were detected by RT-qPCR and Western blot. HE staining showed that lung injury, increased inflammatory cell infiltration, and lung permeability was found in the ALI mice, and DEX treatment significantly attenuated lung tissue damage induced by CLP. The MPO activity and inflammatory cytokines (TNF-α, IL-1ß, and NLRP3) levels were also significantly reduced after DEX treatment compared with those in the ALI mice. Moreover, DEX activated the HMGB1/RAGE/NF-κB pathway and upregulated the pyroptosis-related proteins. However, the protective DEX effect was impaired by RAGE overexpression in ALI mice and MLE-12 cells. Additionally, DEX treatment significantly suppressed HMGB1 translocation from the nucleus region to the cytoplasm, and this effect was reversed by RAGE overexpression. These findings suggested that DEX may be a useful ALI treatment, and the protective effects on ALI mice may be through the inhibition of HMGB1/RAGE/NF-κB pathway and cell pyroptosis.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Ciego/patología , Dexmedetomidina/uso terapéutico , Proteína HMGB1/metabolismo , Sustancias Protectoras/uso terapéutico , Piroptosis , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Ciego/efectos de los fármacos , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citocinas/metabolismo , Dexmedetomidina/farmacología , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Lentivirus , Ligadura , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología , Transporte de Proteínas/efectos de los fármacos , Piroptosis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Transducción de Señal/efectos de los fármacos
5.
Biomed Pharmacother ; 142: 111885, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34385104

RESUMEN

Cordyceps sinensis, including Hirsutella sinensis, is a highly valuable traditional Chinese medicine and is used to treat patients with pulmonary heart disease in clinical practice. However, the underlying mechanisms of its effects remain unclear. In this study, a mouse model of heart failure established by non-thoracic, transverse aortic constriction (TAC) was developed to determine the underlying mechanisms of therapeutic effects of Hirsutella sinensis fungus (HSF) powder. The results showed that HSF treatment remarkably ameliorated myocardial hypertrophy, collagen fiber hyperplasia, and cardiac function in mice with heart failure. Using transcriptional and epigenetic analyses, we found that the mechanism of HSF mainly involved a variety of signaling pathways related to myocardial fibrosis and determined that HSF could reduce the levels of TGF-ß1 proteins in heart tissue, as well as type I and III collagen levels. These data suggest that HSF alleviates heart failure, inhibits irreversible ventricular remodeling, and improves cardiac function through the regulation of myocardial fibrosis-related signaling pathways, which can provide novel opportunities to improve heart failure therapy.


Asunto(s)
Cardiotónicos/farmacología , Cordyceps/química , Insuficiencia Cardíaca/tratamiento farmacológico , Preparaciones de Plantas/farmacología , Animales , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/cirugía , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiotónicos/uso terapéutico , Constricción Patológica/complicaciones , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Fibrosis/tratamiento farmacológico , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ligadura , Masculino , Ratones Endogámicos C57BL , Preparaciones de Plantas/uso terapéutico , Transducción de Señal/efectos de los fármacos
6.
Front Nutr ; 7: 585306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304918

RESUMEN

It has been reported that diet and nutrition play important roles in the occurrence and development of hepatocellular carcinoma (HCC). In this study, we investigated the potential tumor-promoting mechanisms of a high-fat diet (HFD) in mice with dietondiethylnitrosamine (DEN)-induced hepatocarcinogenesis. HFD significantly decreased the survival rate and induced severe liver dysfunction in DEN-induced mice, as indicated by increased serum glutamic-pyruvic transaminase (ALT), glutamic oxalacetic transaminase (AST), and alkaline phosphatase (ALP) levels and increased liver index, liver nodule count, and γ-glutamyltransferase (γ-GT) activity. Moreover, an increased number of fat droplets and HCCs were found in the livers of the HFD mice, who displayed little collagen in and around the liver cancer groove and the infiltration of large number of inflammatory cells, such as macrophages, compared with the control mice. HFD also significantly increased proliferating cell nuclear antigen (PCNA), nuclear factor-κB (NF-κB), cyclin D1, tumor necrosis factor (TNF), and interleukin-1 (IL-1) expression levels in the liver. In vitro, we found that the inducible nitric oxide synthase (iNOS) percentage increased in macrophages after palmitic acid treatment, as well as the secretion of inflammatory factors and cytokines such as interleukin-6(IL-6), interleukin-10(IL-10), CCL2, Interferon γ (IFN-γ), and TNF. Thus, our results demonstrate that an HFD may promote DEN-induced hepatocarcinogenesis in mice by destroying liver function and enhancing the inflammatory response by recruiting and polarizing macrophages in the liver. This study could therefore provide new insights into the tumor promoting effects of an HFD in HCC.

7.
Mediators Inflamm ; 2020: 5270508, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132755

RESUMEN

Radix Aconiti Lateralis Preparata (Fuzi) is a traditional Chinese medicine. Its alkaloids are both cardiotonic and cardiotoxic; however, the underlying mechanisms are unclear. Compatibility testing and processing are the primary approaches used to reduce the toxicity of aconite preparations. The purpose of this study was to compare the effects of crude Fuzi (CFZ), CFZ combined with Glycyrrhiza (Gancao) (CFZ+GC), and prepared materials of CFZ (PFZ) on heart failure (HF) in C57BL/6J mice and explore the potential mechanisms of action of CFZ. Transverse aortic constriction (TAC) was used to generate the HF state, and CFZ (1.5 g·mL-1), PFZ (1.5 g·mL-1), or CFZ+GC (1.8 g·mL-1) was orally administered to the HF-induced mice daily. For the subsequent 8 weeks, hemodynamic indicators, ventricular pressure indices, and mass indices were evaluated, and histopathological imaging was performed. CFZ, CFZ+GC, and PFZ significantly improved left ventricular function and structure and reduced myocardial damage. CFZ+GC was more effective than CFZ and PFZ, whereas CFZ had higher toxicity than CFZ+GC and PFZ. CFZ and CFZ+GC attenuated ischemia-induced inflammatory responses and also inhibited Toll-like receptor-4 (TLR4) and nuclear factor kappa beta (NF-κB) action in the heart. Moreover, mass spectrometry analysis revealed a decrease in the levels of toxic components of CFZ+GC, whereas those of the protective components were increased. This study suggested that GC reduces the toxicity and increases the efficacy of CFZ on HF induced by TAC. Furthermore, GC+CFZ reduces the risk of HF by ameliorating the inflammation response, which might be partially related to the inhibition of the TLR4/NF-κB pathway.


Asunto(s)
Aconitum/química , Glycyrrhiza/química , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Hemodinámica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Remodelación Ventricular
8.
Artículo en Inglés | MEDLINE | ID: mdl-32565866

RESUMEN

Kidney-yang deficiency syndrome (KYDS) is a classic syndrome in traditional Chinese medicine, which is mainly caused by damage to the hypothalamic-pituitary-adrenal (HPA) axis. Hirsutella sinensis fungus (HSF), an artificial substitute of Cordyceps sinensis, has been widely used in TCM. However, the effects and the possible mechanism of HSF on the HPA axis and corresponding KYDS have not yet been investigated. In this study, Lewis rats were used as a spontaneous KYDS model. HSF was intragastrically administered to the Lewis rats at two doses: low dose (1 g/kg) and high dose (2 g/kg). Body weight, temperature, and behavioral tests including grip strength, open field, and Morris water maze (MWM) tests were used to evaluate the KYDS symptoms. Enzyme-linked immunosorbent assay was used to detect the level of circulating adrenocortisol (ACTH), corticosterone (CORT), corticotropin releasing hormone (CRH), cyclic adenosine monophosphate (cAMP), and cyclic guanosine monophosphate (cGMP). In addition, mRNA expression of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin 10 (IL-10), CRH, glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) was detected by quantitative real-time polymerase chain reaction (Q-PCR). The Lewis rats were indicated to have KYDS symptoms and HSF treatment ameliorated these symptoms via enhancement of the HPA axis function, which was evidenced by the increased levels of CRH, ACTH, and CORT in serum and 17-OHCS in urine. HSF also significantly improved the expression of TNF-α, IFN-γ, and IL-2, secreted by Th1 cells, which might accelerate the activation of the immune system related to the HPA axis function. Thus, we conclude that HSF can alleviate KYDS symptoms in Lewis rats by regulating the HPA axis through accelerated immune system activation.

9.
J Ethnopharmacol ; 244: 112136, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31377261

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall. (peony) is a medicinal plant used in the Xiaoqinglong decoction, a commonly prescribed traditional Chinese medicine for asthma. The main active ingredients of peony roots-described as the total glucosides of peony (TGP)-have anti-inflammatory, immunomodulatory, and protective effects on endothelial cells, and they are known to improve rheumatoid arthritis. This study explored the underlying mechanism of TGP activity in the treatment of allergic asthma. MATERIALS AND METHODS: Allergic asthma was induced in BALB/c mice by administering injections of ovalbumin (OVA) mixed with aluminum hydroxide gel and inhaling nebulized OVA. The OVA-sensitized mice were treated with TGP by oral gavage, and the potentially anti-asthmatic treatment effect was studied by testing airway hyperresponsiveness, classifying and counting of leukocytes, performing cytokine assays, and analyzing the lung histopathology. The ß-hexosaminidase activity was assayed as a biomarker to evaluate the effect of TGP on mast cell degranulation. The mechanism of TGP was explored by monitoring the Ca2+ influx level in mast cells (RBL-2H3) using a Ca2+ fluorescent probe technique. RESULTS: In mice with OVA-induced allergic asthma, TGP reduced airway hyperresponsiveness and improved lung tissue pathology, which included a decrease in inflammatory cell infiltration and collagen deposition. TGP also significantly lowered BALF leukocyte, eosinophil, and neutrophil counts, along with chemokines and cytokines, such as eotaxin, TNF-α, IL-4, and MIP-1α, in serum and lungs of OVA-challenged mice. These effects were further confirmed with the decrease of ß-hexosaminidase release and the inhibition of Ca2+ influx in mast cell degranulation. CONCLUSIONS: Our findings suggest that TGP improved OVA-induced allergic asthma in mice mainly by suppressing Ca2+ influx-dependent mast cell degranulation.


Asunto(s)
Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Glucósidos/uso terapéutico , Mastocitos/efectos de los fármacos , Paeonia , Animales , Antiasmáticos/farmacología , Asma/inducido químicamente , Asma/inmunología , Asma/fisiopatología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Calcio/metabolismo , Degranulación de la Célula/efectos de los fármacos , Línea Celular Tumoral , Citocinas/sangre , Citocinas/inmunología , Glucósidos/farmacología , Recuento de Leucocitos , Masculino , Mastocitos/fisiología , Ratones Endogámicos BALB C , Ovalbúmina , Ratas , beta-N-Acetilhexosaminidasas/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-29576798

RESUMEN

The aim of the study was to investigate the effects and underlying mechanism of JKSQP in a rat model of asthma with kidney-yang deficiency (KYD). Materials and Methods. Hydrocortisone (HYD) was used to establish the rat model of KYD; rats were then sensitized and challenged with ovalbumin (OVA). JKSQP was administered to OVA-challenged rats, and the changes in signs and symptoms of KYD were observed. The leukocyte number and subpopulations in bronchoalveolar lavage fluid (BALF) were counted and the cells were stained with Wright-Giemsa dye. Serum adrenocorticotropic hormone (ACTH), corticosterone (CORT), corticotropin-releasing hormone (CRH), total immunoglobulin E (IgE), and OVA-specific IgE levels were determined using relevant enzyme-linked immunosorbent assays (ELISA) kits. Results. JKSQP not only reversed the phenomenon of KYD but also significantly inhibited the number of leukocyte and eosinophils in the BALF, increasing the level of interferon (IFN)-γ and decreasing the levels of interleukin-4 (IL-4) and IgE in the serum compared with the OVA-challenged groups. Conclusions. Taken together, the antiasthma effects of JKSQP were likely mediated by the enhancement of the function of the hypothalamic-pituitary-adrenal axis and the reversal of T helper 1/2 imbalance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA