Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 11(15): 3595-3603, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38742402

RESUMEN

The synthesis of phase-pure carbide nanomaterials is crucial for understanding their structure-performance relationships, and for advancing their application in catalysis. Molybdenum carbides, in particular, have garnered increasing interest due to their Pt-like surface electronic properties and high catalytic activity. Traditional methods for synthesizing molybdenum carbide are often lengthy and energy-intensive, leading to an uncontrolled phase, low purity, and excessive carbon coverage, which hinder their catalytic performance improvement. This work introduces a novel pulsed Joule heating (PJH) technique that overcomes these limitations, enabling the controlled synthesis of high-purity molybdenum carbides (ß-Mo2C, η-MoC1-x, and α-MoC1-x) within seconds by using MoOx/4-Cl-o-phenylenediamine as the hybrid precursor. The PJH method allows precise control over the diffusion of carbon species in the Mo-C system, resulting in a significantly improved phase purity of up to 96.89 wt%. Moreover, the electronic structure of platinum catalysts on molybdenum carbide was modulated through electron metal-support interaction (EMSI) between Pt and MoxC, and contributed to enhanced catalytic performance compared to carbon-supported Pt catalysts during the hydrogen evolution reaction. Overall, this work paves the way for efficient production of high-quality molybdenum carbide nanomaterials, and thus is expected to accelerate their industrial deployments in practical catalytic reactions.

2.
Drug Resist Updat ; 65: 100887, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36370664

RESUMEN

Infections caused by multidrug-resistant fungi pose a devastating threat to human health worldwide, making new antifungal strategies urgently desired. Antimicrobial photodynamic therapy (aPDT) has gained increasing attention due to its potential in fighting against fungal infection. However, the preparation of highly efficient and water-soluble photosensitizers (PSs) for this purpose remains a challenge. Herein, we present a new strategy to prepare powerful PSs for efficient aPDT by introducing a porous cage compound, which could facilitate the transportation of O2 and reactive oxygen species (ROS). Specifically, the natural PS hypocrellin A (HA) was attached to a novel organic cage compound (covalent organic polyhedra 1 tied, COP1T) with polyethylene glycol (PEG) chains to improve its water solubility. It was found that the resulting COP1T-HA exhibited in vitro antifungal efficiency several folds higher compared to the free HA in fighting against four types of multidrug-resistant fungal planktonic cells and biofilms, including the "super fungus" Candida auris. Interestingly, the red-shift of COP1T-HA adsorption led to the realization of phototheranostic aPDT for cage-modified HA or derivatives. Additionally, COP1T-HA exhibited good biocompatibility, excellent disinfection capacity and wound healing efficiency without obvious toxic effects in vivo of rat model. With further development and optimization, COP1T-HA has great potential to become a new class of antifungal agent to fight against drug-resistant pathogens.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Humanos , Ratas , Animales , Fotoquimioterapia/métodos , Candida , Antifúngicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Penicilinas/farmacología , Agua/farmacología
3.
Beilstein J Org Chem ; 18: 796-808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875709

RESUMEN

In the presence of copper sulfate, three- or four-component reactions of 2-methylindole, aromatic aldehydes and various cyclic dienophiles in refluxing toluene afforded diverse spirotetrahydrocarbazoles. This reaction is an important development of the Levy reaction by using 2-methylindole to replace ethyl indole-2-acetate and successfully provides facile access to important polysubstituted spiro[carbazole-3,3'-indolines], spiro[carbazole-2,3'-indolines], spiro[carbazole-3,5'-pyrimidines] and spiro[carbazole-3,1'-cycloalkanes] in satisfactory yields and with high diastereoselectivity.

4.
Beilstein J Org Chem ; 17: 2425-2432, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621404

RESUMEN

The p-TsOH-catalyzed Diels-Alder reaction of 3-(indol-3-yl)maleimides with chalcone in toluene at 60 °C afforded two diastereoisomers of tetrahydropyrrolo[3,4-c]carbazoles, which can be dehydrogenated by DDQ oxidation in acetonitrile at room temperature to give the aromatized pyrrolo[3,4-c]carbazoles in high yields. On the other hand, the one-pot reaction of 3-(indol-3-yl)-1,3-diphenylpropan-1-ones with chalcones or benzylideneacetone in acetonitrile in the presence of p-TsOH and DDQ resulted in polyfunctionalized carbazoles in satisfactory yields. The reaction mechanism included the DDQ oxidative dehydrogenation of 3-(indol-3-yl)-1,3-diphenylpropan-1-ones to the corresponding 3-vinylindoles, their acid-catalyzed Diels-Alder reaction and sequential aromatization process.

5.
Org Biomol Chem ; 19(28): 6322-6327, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34223583

RESUMEN

Functionalized spiro[carbazole-3,5'-pyrimidines] and spiro[carbazole-3,1'-cyclohexanes] were efficiently synthesized in satisfactory yields with high diastereoselectivity by CuSO4 catalyzed multicomponent reaction of indole-2-acetate, aromatic aldehyde and 1,3-dimethylbarbituric acid or dimedone. The reaction was finished with sequential Diels-Alder reaction of both in situ generated indole-2,3-quinodimethane and a dienophile. Additionally, the initially formed spiro[carbazole-3,5'-pyrimidines] were converted to dehydrogenated spiro[carbazole-3,5'-pyrimidines] by DDQ oxidation. The initially formed spiro[carbazole-3,1'-cyclohexanes] were converted to δ-valerolactone-substituted carbazoles by a DDQ promoted Baeyer-Villiger oxidation process.

6.
J Org Chem ; 86(13): 8726-8741, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34111925

RESUMEN

In the presence of copper sulfate, the three-component reaction of aromatic aldehydes, ethylindole-3-acetate and 4-arylidene-5-methyl-2-phenylpyrazol-3-ones, in refluxing toluene afforded spiro[carbazole-3,4'-pyrazoles] in good yields with high diastereoselectivity. More importantly, the similar CuSO4 promoted the four-component reaction of two molecular aromatic aldehydes with ethylindole-3-acetate and 5-methyl-2-phenyl-pyrazol-3-one resulted in 2,4-diarylspiro[carbazole-3,4'-pyrazoles] in satisfactory yields. Additionally, CuSO4 promoted the four-component reaction of two molecular aromatic aldehydes, ethylindole-3-acetate and 2-phenylthiazol-4-one, in refluxing toluene gave 2,4-diarylspiro[carbazole-3,4'-thiazoles] with diastereomeric ratios in the range of 3:1 to 20:1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...