Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 19(1): 81, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559087

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) is an important epigenetic modification involved in RNA stability and translation regulation. Manipulating the expression of RNA m6A methyltransferases or demethylases makes it difficult to study the effect of specific RNA methylation. RESULTS: In this study, we report the development of Plant m6A Editors (PMEs) using dLwaCas13a (from L. wadei) and human m6A demethylase ALKBH5 catalytic domain. PMEs specifically demethylates m6A of targeted mRNAs (WUS, STM, FT, SPL3 and SPL9) to increase mRNAs stability. In addition, we discovered that a double ribozyme system can significantly improve the efficiency of RNA editing. CONCLUSION: PMEs specifically demethylates m6A of targeted mRNAs to increase mRNAs stability, suggesting that this engineered tool is instrumental for biotechnological applications.

2.
Food Chem (Oxf) ; 7: 100179, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37583676

RESUMEN

Sweet corn is perishable and have limited harvest duration and shelf life due to their quality deterioration. Reactive oxygen species (ROS) are one of the most predominant factors for maintaining quality of sweet corn during and after harvest. Brassinosteroids (BRs) can enhance the activity of antioxidant enzymes and decrease the ROS level in plants. In this study, we found that a bioactive BR (24-epibrassinolide, EBR) treatment before harvest markedly inhibited change of quality indicators (MDA content, weight loss rate, and soluble sugar content) during and after harvest. Further analysis revealed that EBR promoted the activity and transcriptions of antioxidant enzymes, maintaining lower ROS level in kernels. Meanwhile, exogenous EBR increased the expression level of genes controlling sucrose transport in sweet corn kernels. Bioinformatics and binding analysis identified that BR transcription factor ZmBES1/ZmBZR1-10 might potentially bind to and upregulate transcriptions of antioxidant enzyme genes including SOD and POD genes, and sucrose transport-related genes including SUT and SWEET genes. These results indicated that exogenous application of EBR ameliorates quality during and after harvest by improving the antioxidant capacity and photosynthetic assimilates accumulation rate of sweet corn, thus prolonging harvest duration and shelf life in sweet corn.

3.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446367

RESUMEN

WUSCHEL (WUS) is a crucial transcription factor in regulating plant stem cell development, and its expression can also improve genetic transformation. However, the ectopic expression of WUS always causes pleiotropic effects during genetic transformation, making it important to understand the regulatory mechanisms underlying these phenomena. In our study, we found that the transient expression of the maize WUS ortholog ZmWus2 caused severe leaf necrosis in Nicotiana benthamiana. We performed transcriptomic and non-target metabolomic analyses on tobacco leaves during healthy to wilted states after ZmWus2 transient overexpression. Transcriptomic analysis revealed that ZmWus2 transformation caused active metabolism of inositol trisphosphate and glycerol-3-phosphate, while also upregulating plant hormone signaling and downregulating photosystem and protein folding pathways. Metabolomic analysis mainly identified changes in the synthesis of phenylpropanoid compounds and various lipid classes, including steroid synthesis. In addition, transcription factors such as ethylene-responsive factors (ERFs), the basic helix-loop-helix (bHLH) factors, and MYBs were found to be regulated by ZmWus2. By integrating these findings, we developed a WUS regulatory model that includes plant hormone accumulation, stress responses, lipid remodeling, and leaf necrosis. Our study sheds light on the mechanisms underlying WUS ectopic expression causing leaf necrosis and may inform the development of future genetic transformation strategies.


Asunto(s)
Nicotiana , Transcriptoma , Nicotiana/genética , Nicotiana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Lípidos
4.
Food Res Int ; 163: 112188, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596131

RESUMEN

Harvest duration and postharvest shelf life are two of the most important characters for sweet corn. However, the regulatory mechanism remains unclear. We performed a comparative transcriptome analysis of long harvest-duration and shelf-life sweet corn (LHS) and short harvest-duration and shelf-life field corn (SHS) at three stages, i.e. 10 days after pollination (10DAP), 22 days after pollination (22DAP), and 7 days after harvest (7DAH). We have observed the major transcriptome changes accompanying the harvest process in LHS corn. Gene expression pattern analysis and differentially expressed genes (DEGs) functional enrichments suggested an association between ROS metabolism in kernels with harvest duration and postharvest shelf life. The genes encoding cytochrome P450, peroxidase, peroxiredoxin, glutathione peroxidase, and glutathione S-transferase were upregulated specifically in LHS kernels during and after harvest compared to SHS kernels. These novel findings reveal a new regulatory mechanism of corn post-harvest shelf life and should be useful for extending harvest duration and shelf life for sweet corn.


Asunto(s)
Perfilación de la Expresión Génica , Zea mays , Zea mays/genética , Zea mays/metabolismo , Transcriptoma
5.
PeerJ ; 10: e13629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35818359

RESUMEN

Micronutrients, including vitamins, minerals, and other bioactive compounds, have tremendous impacts on human health. Much progress has been made in improving the micronutrient content of inbred lines in various crops through biofortified breeding. However, biofortified breeding still falls short for the rapid generation of high-yielding hybrids rich in multiple micronutrients. Here, we bred multi-biofortified sweet corn hybrids efficiently through marker-assisted selection. Screening by molecular markers for vitamin E and folic acid, we obtained 15 inbred lines carrying favorable alleles (six for vitamin E, nine for folic acid, and three for both). Multiple biofortified corn hybrids were developed through crossing and genetic diversity analysis.


Asunto(s)
Biofortificación , Alimentos Fortificados , Glutamato Formimidoiltransferasa , Micronutrientes , Biofortificación/métodos , Ácido Fólico , Glutamato Formimidoiltransferasa/genética , Micronutrientes/genética , Fitomejoramiento/métodos , Verduras/genética , Vitamina E , Zea mays/genética
6.
Heliyon ; 8(4): e09248, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35399384

RESUMEN

The two main glucan polymers cellulose and callose in plant cell wall are synthesized at the plasma membrane by cellulose or callose synthase complexes. Cellulose is the prevalent glucan in cell wall and provides strength to the walls to support directed cell expansion. By contrast, callose is mainly produced in special cell wall and exercises important functions during development and stress responses. However, the structure and precise regulatory mechanism of callose synthase complex is not very clear. This review therefore compares and analyzes the regulation of callose and cellulose synthesis, and further emphasize the future research direction of callose synthesis.

7.
Plant Biotechnol J ; 19(7): 1468-1480, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33560572

RESUMEN

The plant cell wall provides mechanical strength to support plant growth and development and to determine plant architecture. Cellulose and mixed-linkage glucan (MLG) present in primary cell wall, whereas cellulose, lignin and hemicellulose exist in secondary cell wall. Biosynthesis of the cell wall biopolymers needs the coordinated transcriptional regulation of all the biosynthetic genes. The module of OsmiR166b-OsHox32 regulates expression levels of the genes related to biosynthesis of MLG, cellulose and lignin. Transgenic plants knocking down miR166b (STTM166b) by short tandem target mimic (STTM) technology or overexpressing OsHox32 (OEHox32) showed drooping leaves and brittle culms. Due to accumulation of less lignin and cellulose, the cell wall thickness of STTM166b and OEHox32 plants was reduced when compared to that of wild-type plants. Overexpression of miR166b (OE166b) in rice plants or knocking down of OsHox32 by RNA interference (RNAiHox32) led to increased thickness of cell walls and enhanced mechanical strength of culms. Molecular analyses showed that OsmiR166b-OsHox32 pair regulates cell wall-related gene expression. OsHox32 binds to the promoters of OsCAD2 and OsCESA7 to suppress the expression levels of these two genes. The suppression of OsCAD2 is synergistic when OsHox32 is co-expressed with OSH15 (Oryza sativa homeobox 15). OsHox32 interacts with OSH15, and the START domain of OsHox32, harbouring the miR166b cleavage site, is required for the interaction of these two proteins. Our results demonstrate that OsmiR166b-OsHox32 pair plays important roles not only in plant growth and development but also in plant architecture by regulating the cell wall-related gene expression.


Asunto(s)
Oryza , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Lignina/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
8.
J Exp Bot ; 71(14): 4033-4041, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32270203

RESUMEN

The temporary callose layer surrounding the tetrads of microspores is critical for male gametophyte development in flowering plants, as abnormal callose deposition can lead to microspore abortion. A sophisticated signaling network regulates callose biosynthesis but these pathways are poorly understood. In this study, we characterized a rice male-sterile mutant, oslecrk5, which showed defective callose deposition during meiosis. OsLecRK5 encodes a plasma membrane-localized lectin receptor-like kinase, which can form a dimer with itself. Moreover, normal anther development requires the K-phosphorylation site (a conserved residue at the ATP-binding site) of OsLecRK5. In vitro assay showed that OsLecRK5 phosphorylates the callose synthesis enzyme UGP1, enhancing callose biosynthesis during anther development. Together, our results demonstrate that plasma membrane-localized OsLecRK5 phosphorylates UGP1 and promotes its activity in callose biosynthesis in rice. This is the first evidence that a receptor-like kinase positively regulates callose biosynthesis.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Oryza/genética , Oryza/metabolismo , Polen/metabolismo
9.
J Integr Plant Biol ; 62(10): 1594-1606, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32149461

RESUMEN

Male sterility is a prerequisite for hybrid seed production. The phytohormone gibberellin (GA) is involved in regulating male reproductive development, but the mechanism underlying GA homeostasis in anther development remains less understood. Here, we report the isolation and characterization of a new positive regulator of GA homeostasis, swollen anther wall 1 (SAW1), for anther development in rice (Oryza sativa L.). Rice plants carrying the recessive mutant allele saw1 produces abnormal anthers with swollen anther wall and aborted pollen. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRIPSR-associated protein 9-mediated knockout of SAW1 in rice generated similar male sterile plants. SAW1 encodes a novel nucleus-localizing CCCH-tandem zinc finger protein, and this protein could directly bind to the promoter region of the GA synthesis gene OsGA20ox3 to induce its anther-specific expression. In the saw1 anther, the significantly decreased OsGA20ox3 expression resulted in lower bioactive GA content, which in turn caused the lower expression of the GA-inducible anther-regulator gene OsGAMYB. Thus, our results disclose the mechanism of the SAW1-GA20ox3-GAMYB pathway in controlling rice anther development, and provide a new target gene for the rapid generation of male sterile lines by genome editing for hybrid breeding.


Asunto(s)
Flores/metabolismo , Giberelinas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Oryza/crecimiento & desarrollo
10.
Planta ; 238(2): 259-69, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23640684

RESUMEN

Heterosis is a commonly observed phenomenon in nature and refers to the superior performance of hybrids relative to both parents. The molecular mechanisms of heterosis are mostly unknown. Quantitative trait locus (QTL) mapping has been used to explain the genetic basis of heterosis, and large amounts of QTLs have been mapped for various agronomic traits, but the nature of QTL contributing to heterosis is still enigmatic. MicroRNAs (miRNAs) are master regulators in the processes of plant development and trait performance, and many miRNAs are predicted to reside in QTL intervals. We analyzed the expression modes of miRNAs, which were picked up from miRNA databases and chosen from those predicted from QTL intervals by bioinformatic approaches, in different organs at developmental stages of an elite rice hybrid and its parents. All possible modes of action for miRNA expression were detected, but most miRNAs showed nonadditive mode, and different stages and distinct organs displayed different patterns of miRNA expression. A large proportion of miRNAs were not detected for expression in leaves but expressed in the culms and roots of the hybrid at tillering stage. MiRNAs from grain-weight QTL intervals have multiple effects on grain development. Together, our results reveal that miRNAs, especially those from QTL intervals, play roles in heterotic performance in this elite rice hybrid, our results also shade new light on understanding the molecular mechanisms of heterosis.


Asunto(s)
Quimera/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , MicroARNs/genética , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Genes Dominantes , Vigor Híbrido/genética , Oryza/crecimiento & desarrollo , Fenotipo , Hojas de la Planta/genética , ARN de Planta/genética , Plantones/genética , Plantones/crecimiento & desarrollo
11.
J Exp Bot ; 60(14): 4051-62, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19700495

RESUMEN

Bananas (Musa acuminata, AAA group) fail to develop a yellow peel and stay green when ripening at temperatures >24 degrees C. The identification of the mechanisms leading to the development of stay-green ripe bananas has practical value and is helpful in revealing pathways involved in the regulation of chlorophyll (Chl) degradation. In the present study, the Chl degradation pathway was characterized and the progress of ripening and senescence was assessed in banana peel at 30 degrees C versus 20 degrees C, by monitoring relevant gene expression and ripening and senescence parameters. A marked reduction in the expression levels of the genes for Chl b reductase, SGR (Stay-green protein), and pheophorbide a oxygenase was detected for the fruit ripening at 30 degrees C, when compared with fruit at 20 degrees C, indicating that Chl degradation was repressed at 30 degrees C at various steps along the Chl catabolic pathway. The repressed Chl degradation was not due to delayed ripening and senescence, since the fruit at 30 degrees C displayed faster onset of various ripening and senescence symptoms, suggesting that the stay-green ripe bananas are of similar phenotype to type C stay-green mutants. Faster accumulation of high levels of fructose and glucose in the peel at 30 degrees C prompted investigation of the roles of soluble sugars in Chl degradation. In vitro incubation of detached pieces of banana peel showed that the pieces of peel stayed green when incubated with 150 mM glucose or fructose, but turned completely yellow in the absence of sugars or with 150 mM mannitol, at either 20 degrees C or 30 degrees C. The results suggest that accumulation of sugars in the peel induced by a temperature of 30 degrees C may be a major factor regulating Chl degradation independently of fruit senescence.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Clorofila/metabolismo , Musa/metabolismo , Carbohidratos/química , Frutas/química , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Calor , Musa/química , Musa/genética , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA