Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(7): 1453-1468.e6, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38484733

RESUMEN

Itch encompasses both sensory and emotional dimensions, with the two dimensions reciprocally exacerbating each other. However, whether a shared neural circuit mechanism governs both dimensions remains elusive. Here, we report that the anterior insular cortex (AIC) is activated by both histamine-dependent and -independent itch stimuli. The activation of AIC elicits aversive emotion and exacerbates pruritogen-induced itch sensation and aversion. Mechanistically, AIC excitatory neurons project to the GABAergic neurons in the dorsal bed nucleus of the stria terminalis (dBNST). Manipulating the activity of the AIC → dBNST pathway affects both itch sensation and itch-induced aversion. Our study discovers the shared neural circuit (AIC â†’ dBNST pathway) underlying the itch sensation and aversion, highlights the critical role of the AIC as a central hub for the itch processing, and provides a framework to understand the neural mechanisms underlying the sensation and emotion interaction.


Asunto(s)
Corteza Insular , Sensación , Humanos , Sensación/fisiología , Neuronas GABAérgicas/metabolismo , Histamina/efectos adversos , Histamina/metabolismo , Prurito/inducido químicamente
2.
Neuron ; 112(9): 1498-1517.e8, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430912

RESUMEN

Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.


Asunto(s)
Empatía , Caracteres Sexuales , Animales , Masculino , Femenino , Ratones , Empatía/fisiología , Corteza Piriforme/fisiología , Corteza Piriforme/metabolismo , Señales (Psicología) , Ratones Endogámicos C57BL , Afecto/fisiología , Neuronas/fisiología , Neuronas/metabolismo , Conducta Animal/fisiología
3.
Front Mol Neurosci ; 16: 1185243, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383426

RESUMEN

Background: Both acute and persistent pain is associated with anxiety in clinical observations, but whether the underlying neural mechanisms differ is poorly understood. Methods: We used formalin or complete Freund's adjuvant (CFA) to induce acute or persistent pain. Behavioral performance was assessed by the paw withdrawal threshold (PWT), open field (OF), and elevated plus maze (EPM) tests. C-Fos staining was used to identify the activated brain regions. Chemogenetic inhibition was further performed to examine the necessity of brain regions in behaviors. RNA sequencing (RNA-seq) was used to identify the transcriptomic changes. Results: Both acute and persistent pain could lead to anxiety-like behavior in mice. The c-Fos expression indicates that the bed nucleus of the stria terminalis (BNST) is activated only in acute pain, whereas the medial prefrontal cortex (mPFC) is activated only in persistent pain. Chemogenetic manipulation reveals that the activation of the BNST excitatory neurons is required for acute pain-induced anxiety-like behaviors. In contrast, the activation of the prelimbic mPFC excitatory neurons is essential for persistent pain-induced anxiety-like behaviors. RNA-seq reveals that acute and persistent pain induces differential gene expression changes and protein-protein interaction networks in the BNST and prelimbic mPFC. The genes relevant to neuronal functions might underline the differential activation of the BNST and prelimbic mPFC in different pain models, and be involved in acute and persistent pain-related anxiety-like behaviors. Conclusion: Distinct brain regions and gene expression patterns are involved in acute and persistent pain-related anxiety-like behaviors.

4.
Ann Transl Med ; 9(20): 1531, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34790737

RESUMEN

BACKGROUND: Our previous studies demonstrated that cysteinyl leukotrienes receptor 1 (CysLT1R) knockout, pharmacological blockade, or hippocampus knockdown produced beneficial effects against Alzheimer's disease (AD); however, whether CysLT1R upregulation has deleterious effects on AD remains elusive. METHODS: In this study, we investigated the changes in behaviors, hippocampal amyloidogenesis, and synapse plasticity after CysLT1R overexpression by microinfusion of the lentiviral vector, containing its coding sequence of mouse (LV-CysLT1R), into the bilateral dentate gyri (DG) of the hippocampus or CysLT1R activation by repeated systemic administration of its agonist YM-17690 (0.1 mg/kg, once a day, i.p., for 28 d). RESULTS: The behavior data showed that overexpression of CysLT1R in hippocampal DG or administration of YM-17690 deteriorated behavioral performance in Morris water maze (MWM), Y-maze tests, and novel object recognition (NOR) in young APP/PS1 mice. The further studies showed that these treatments significantly destroyed synaptic function, as evidenced by impaired hippocampal long-term potentiation (LTP), decreased spine density, low number of synapses, and decreased postsynaptic protein (PSD95), and promoted the generation of amyloid ß (Aß) through increased expression of BACE1 and PS1 in the hippocampus of young APP/PS1 mice. CONCLUSIONS: Together, our results indicate that CysLT1R upregulation accelerates memory impairment in young APP/PS1 mice, which is associated with promoting synaptic dysfunction and amyloidogenesis in the hippocampus.

5.
Front Aging Neurosci ; 13: 744719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658844

RESUMEN

Perioperative neurocognitive disorders (PND) encompass short-term delirium and long-term cognitive dysfunction. Aging increases the susceptibility to PND, yet the neural mechanism is not known. In this study, we monitored the dynamic changes of neuronal activity in the prelimbic cortex before and after surgery. We found that anesthesia combined with surgery, but not anesthesia alone, induced a prolonged decrease in neuronal activity during the post-operation period in the aged mice, but not in the adult mice. The prolonged decrease in neuronal activity was accompanied by surgery-induced microglial activation and proinflammatory cytokines expression. Importantly, we found that the enriched environment (EE) completely prevented both the prolonged neural inhibition and neuroinflammation, and improved cognitive function in the aged mice. These results indicate that the prolonged neural inhibition correlated to PND and that EE before the surgery could effectively alleviate the surgery- induced cognitive dysfunction.

6.
Aging (Albany NY) ; 13(5): 6634-6661, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33591941

RESUMEN

As a major pathological hallmark of Alzheimer's disease (AD), amyloid-ß (Aß) is regarded as a causative factor for cognitive impairment. Extensive studies have found Aß induces a series of pathophysiological responses, finally leading to memory loss in AD. Our previous results demonstrated that cysteinyl leukotrienes receptor 1 (CysLT1R) antagonists improved exogenous Aß-induced memory impairment. But the role of CysLT1R in AD and its underlying mechanisms still remain elusive. In this study, we investigated CysLT1R levels in AD patients and APP/PS1 mice. We also generated APP/PS1-CysLT1R-/- mice by clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated CysLT1R deletion in APP/PS1 mice and studied the effect of CysLT1R knockout on amyloidogenesis, synapse structure and plasticity, cognition, neuroinflammation, and kynurenine pathway. These attributes were also studied after lentivirus-mediated knockdown of CysLT1R gene in APP/PS1 mice. We found that CysLT1R knockout or knockdown could conserve synaptic structure and plasticity, and improve cognition in APP/PS1 mice. These effects were associated with concurrent decreases in amyloid processing, reduced neuroinflammation and suppression of the kynurenine pathway. Our study demonstrates that CysLT1R deficiency can mediate several beneficial effects against AD pathogenesis, and genetic/pharmacological ablation of this protein could be a potential therapeutic option for AD.


Asunto(s)
Amiloidosis/prevención & control , Sistemas CRISPR-Cas , Disfunción Cognitiva/prevención & control , Eliminación de Gen , Receptores de Leucotrienos/genética , Transmisión Sináptica , Precursor de Proteína beta-Amiloide , Animales , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal
7.
Neuroscience ; 355: 200-211, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28499972

RESUMEN

Diabetes comes with an additional burden of moderate to severe hyperlipidemia, but little is known about the effects of lipid-lowering therapy on diabetic complications such as diabetes-associated cognitive decline. Herein we investigated the effects of statins on memory impairment and neurotoxicity in streptozotocin-induced diabetic mice. Our data indicated that oral administration of simvastatin at 10 or 20mg/kg for 4weeks significantly ameliorated diabetes-associated memory impairment reflected by performance better in the Morris water maze and Y-maze tests. The further study showed that these treatments caused significant increase of peroxisome proliferator-activated receptors gamma and decrease of NF-κB p65 in nucleus of hippocampus and cortex, and ameliorated neuroinflammatory response as evidenced by less Iba-1-positive cells and lower inflammatory mediators including IL-1ß, IL-6 and TNF-α as well as suppressed neuronal apoptosis as indicated by decreased TUNEL-positive cells, increased ratio of Bcl-2/Bax and decreased caspase-3 activity in the hippocampus and cortex. Moreover, simvastatin pronouncedly attenuated amyloidogenesis by decreasing amyloid-ß, amyloid precursor protein (APP) and beta-site APP cleaving enzyme-1. As expected, treated with simvastatin, the diabetic mice exhibited significant improvement of hyperlipidemia rather than hyperglycemia. Our findings disclosed novel therapeutic potential of simvastatin for the diabetes-associated cognitive impairment.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Hipolipemiantes/uso terapéutico , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Simvastatina/uso terapéutico , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Glucemia/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Fragmentos de Péptidos/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Acta Pharmacol Sin ; 38(4): 477-487, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28112182

RESUMEN

Evidence suggests that neuroinflammation is involved in depression and that the cysteinyl leukotriene receptor 1 (CysLT1R) plays a potential pathophysiological role in several types of CNS disorders. Our previous study has shown that knockdown of hippocampal CysLT1R in mice prevents the depressive-like phenotype and neuroinflammation induced by chronic mild stress (CMS). Here, we examined the effects of hippocampal CysLT1R knockdown and CysLT1R blockade on LPS-induced depressive-like behavior in mice. We found that injection of LPS (0.5 mg/kg, ip) caused marked increase in hippocampal CysLT1R expression, which was reversed by pretreatment with fluoxetine (20 mg·kg-1·d-1 for 7 d, ig). Knockdown of hippocampal CysLT1R or blockade of CysLT1R by pretreatment with pranlukast (0.5 mg/kg, ip) significantly suppressed LPS-induced depressive behaviors, as evidenced by decreases in mouse immobility time in the forced swimming test (FST) and tail suspension test (TST) and latency to feed in the novelty-suppressed feeding (NSF) test. Moreover, both CysLT1R knockdown and CysLT1R blockade markedly prevented LPS-induced neuroinflammation, as shown by the suppressed activation of microglia and NF-κB signaling as well as the hippocampal levels of TNF-α and IL-1ß in mice. Our results suggest that CysLT1R may be involved in LPS-induced depressive-like behaviors and neuroinflammation, and that downregulation of CysLT1R could be a novel and potential therapeutic strategy for the treatment of depression, at least partially due to its role in neuroinflammation.


Asunto(s)
Depresión/tratamiento farmacológico , Hipocampo/metabolismo , Lipopolisacáridos/farmacología , Receptores de Leucotrienos/genética , Animales , Cromonas/uso terapéutico , Depresión/metabolismo , Depresión/psicología , Fluoxetina/uso terapéutico , Técnicas de Silenciamiento del Gen , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antagonistas de Leucotrieno/uso terapéutico , Masculino , Ratones Endogámicos ICR , Receptores de Leucotrienos/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA