Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(13): 7187-7202, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38515289

RESUMEN

To determine the protective mechanism of puerarin against nonalcoholic steatohepatitis (NASH), the pharmacodynamic effects of puerarin on NASH were evaluated by using zebrafish, cells, and mice. Western blotting, flow cytometry, immunofluorescence, and qRT-PCR were used to detect the effects of puerarin on RAW264.7 autophagy and polarization. Key target interactions between autophagy and polarization were detected using immunoprecipitation. Puerarin regulated the M1/M2 ratio of RAW 264.7 cells induced by LPS + INF-γ. Transcriptomics revealed that PAI-1 is a key target of puerarin in regulating macrophage polarization. PAI-1 knockout reduced the number of M1-type macrophages and increased the number of M2-type macrophages. Puerarin regulated PAI-1 and was associated with macrophage autophagy. It increased p-ULK1 expression in macrophages and activated autophagic flux, reducing the level of PAI-1 expression. Stat3/Hif-1α and PI3K/AKT signaling pathways regulated the number of macrophage polarization phenotypes, reducing liver lipid droplet formation, alleviating liver structural abnormalities, decreasing the number of cytoplasmic vacuoles, and decreasing the area of blue collagen in NASH mice. Puerarin is a promising dietary component for NASH alleviation.


Asunto(s)
Isoflavonas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidor 1 de Activador Plasminogénico , Pez Cebra , Macrófagos , Autofagia , Activación de Macrófagos
2.
Molecules ; 28(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764423

RESUMEN

(1) Background: Solanum nigrum L. is a plant of the genus Solanum in the family Solanaceae and is commonly used to treat tumors. Solasonin (SS) is a steroidal alkaloid extracted from Solanum nigrum L. that has anti-colorectal cancer (CRC) activity. (2) Methods: Column chromatography, semi-preparative HPLC and cellular activity screening were used to isolate potential anti-CRC active compounds in Solanum nigrum L., and structure identification using 1H-NMR and 13C-NMR techniques. Expression levels of HDAC in CRC were mined in the UALCAN database. The in vitro effects of SS on SW620 cell line and its mechanism were examined via Western blot, EdU staining, flow cytometry and immunofluorescence. CRC xenograft model and IHC staining were mainly used to evaluate the role of SS in vivo. (3) Results: The results showed that SS was the most potent anti-CRC component in Solanum nigrum L., which induced apoptosis and cell cycle arrest in the SW620 cell line. HDAC was highly expressed in CRC. The treatment of SW620 cell line with SS resulted in a significant downregulation of HDAC, an increase in the level of P53 acetylation and a subsequent increase in the level of P21. The in vivo validation results showed that SS could effectively inhibit CRC growth, which was associated with the downregulation of HDAC. (4) Conclusions: SS treatment for CRC mainly works through the induction of apoptosis and cycle arrest, and its mechanism of action is mainly related to HDAC-induced P53 acetylation, and the HDAC/P53 signaling pathway may be a potential pathway for the treatment of CRC.


Asunto(s)
Neoplasias , Solanum nigrum , Solanum , Humanos , Acetilación , Proteína p53 Supresora de Tumor/genética , Regulación hacia Abajo
3.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570686

RESUMEN

Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid ß-protein (Aß) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.


Asunto(s)
Enfermedad de Alzheimer , Ginsenósidos , Panax , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Apoptosis
4.
Phytother Res ; 37(9): 3867-3897, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37449926

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a common condition that is prevalent in patients who consume little or no alcohol, and is characterized by excessive fat accumulation in the liver. The disease is becoming increasingly common with the rapid economic development of countries. Long-term accumulation of excess fat can lead to NAFLD, which represents a global health problem with no effective therapeutic approach. NAFLD is a complex, multifaceted pathological process that has been the subject of extensive research over the past few decades. Herbal medicines have gained attention as potential therapeutic agents to prevent and treat NAFLD due to their high efficacy and low risk of side effects. Our overview is based on a PubMed and Web of Science database search as of Dec 22 with the keywords: NAFLD/NASH Natural products and NAFLD/NASH Herbal extract. In this review, we evaluate the use of herbal medicines in the treatment of NAFLD. These natural resources have the potential to inform innovative drug research and the development of treatments for NAFLD in the future.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Extractos Vegetales/uso terapéutico
5.
Hortic Res ; 10(5): uhad041, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37159802

RESUMEN

How species diverge into different lineages is a central issue in evolutionary biology. Despite the increasing evidence indicating that such divergences do not need geographic isolation, the correlation between lineage divergence and the adaptive ecological divergence of phenotype corresponding to distribution is still unknown. In addition, gene flow has been widely detected during and through such diverging processes. We used one widely distributed Aquilegia viridiflora complex as a model system to examine genomic differentiation and corresponding phenotypic variations along geographic gradients. Our phenotypic analyses of 20 populations from northwest to northeast China identified two phenotypic groups along the geographic cline. All examined traits are distinct from each other, although a few intermediate individuals occur in their contacting regions. We further sequenced the genomes of representative individuals of each population. However, four distinct genetic lineages were detected based on nuclear genomes. In particular, we recovered numerous genetic hybrids in the contact regions of four lineages. Gene flow is widespread and continuous between four lineages but much higher between contacting lineages than geographically isolated lineages. Gene flow and natural selection might result in inconsistency between heredity and phenotype. Moreover, many genes with fast lineage-specific mutations were identified to be involved in local adaptation. Our results suggest that both geographic isolation and local selection exerted by the environment and pollinators may together create geographic distributions of phenotypic variations as well as the underlying genomic divergences in numerous lineages.

6.
Front Pharmacol ; 14: 1070738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814491

RESUMEN

Nephropathy is a general term for kidney diseases, which refers to changes in the structure and function of the kidney caused by various factors, resulting in pathological damage to the kidney, abnormal blood or urine components, and other diseases. The main manifestations of kidney disease include hematuria, albuminuria, edema, hypertension, anemia, lower back pain, oliguria, and other symptoms. Early detection, diagnosis, and active treatment are required to prevent chronic renal failure. The concept of nephropathy encompasses a wide range of conditions, including acute renal injury, chronic kidney disease, nephritis, renal fibrosis, and diabetic nephropathy. Some of these kidney-related diseases are interrelated and may lead to serious complications without effective control. In serious cases, it can also develop into chronic renal dysfunction and eventually end-stage renal disease. As a result, it seriously affects the quality of life of patients and places a great economic burden on society and families. Ginsenoside is one of the main active components of ginseng, with anti-inflammatory, anti-tumor, antioxidant, and other pharmacological activities. A variety of monomers in ginsenosides can play protective roles in multiple organs. According to the difference of core structure, ginsenosides can be divided into protopanaxadiol-type (including Rb1, Rb3, Rg3, Rh2, Rd and CK, etc.), and protopanaxatriol (protopanaxatriol)- type (including Rg1, Rg2 and Rh1, etc.), and other types (including Rg5, Rh4, Rh3, Rk1, and Rk3, etc.). All of these ginsenosides showed significant renal function protection, which can reduce renal damage in renal injury, nephritis, renal fibrosis, and diabetic nephropathy models. This review summarizes reports on renal function protection and the mechanisms of action of these ginsenosides in various renal injury models.

7.
Heliyon ; 9(2): e13186, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36785814

RESUMEN

Blockchain can ensure data security and reliability during the stage of building operation and maintenance (BOM), provide reliable data for decision-making. However, existing schemes based on single-chain architecture have the problems of storage limitation and scalability, and ignore the impact of event's priority and real-time on blockchain transaction. Therefore, for BOM, this paper provides a BOM framework based on sharding blockchain (SBC-BOMF), which constructs two-layer architecture based on master-chain and multiple shards, relieves the storage pressure of blockchain nodes and improves the concurrency capability. Priority-based transaction handling strategy is designed to achieve reasonable and rapid response for multi-level transactions. Finally, an actual BOM project is taken as example to illustrate the effectiveness of proposed scheme; experiments are conducted for performance testing and evaluation. Results show that proposed scheme can effectively solve the scalability problem caused by the application of blockchain in BOM, reduce storage overhead, and realize efficient handling for blockchain transactions.

8.
J Ethnopharmacol ; 303: 115978, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519753

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C.A. Meyer reportedly exhibits various beneficial pharmacological activities. Panax ginseng glycoproteins (PGG) are a class of glycosylated protein components extracted from ginseng and can exert significant activity for improving learning and memory abilities. AIM OF THE STUDY: The objective of the present study was to investigate the PGG-mediated protective mechanism against neurodegenerative diseases via the Notch signaling pathway using proteomic methods. MATERIALS AND METHODS: We examined learning and memory in mice using the Morris water maze and nest-building paradigms. The PGG structure was determined using multi-information fusion based on liquid chromatography-mass spectrometry (LC/MS). Accurate glycosylation sites of glycoproteins were identified using the advanced glycosylation analysis software Byonic. Furthermore, connection modes of the oligosaccharide chain were clarified by methylation analysis of sugar residues. The differentially expressed proteins (DEPs) between wild-type (WT) and APP/APS1 mice were measured and compared using label-free quantitative proteomics, and related signaling pathways were identified. For validation, we performed a series of in vitro tests, including an assessment of cell viability, apoptosis assay, quantitative real-time polymerase chain reaction, and western blotting. RESULTS: In the Morris water maze and nesting experiments, PGG-treated WT mice exhibited significantly improved learning and memory. The structures of 171 glycoprotein fragments in PGG matched the credible score, and typical structures were identified using LC/MS data analysis. According to the proteomic analysis results, 188 DEPs were detected between the model and administration groups, and two downregulated DEPs were related to the Notch signaling pathway. Based on the in vitro verification tests, PGG significantly inhibited the expression of key proteins in the Notch signaling pathway in microglia. CONCLUSIONS: PGG could prevent the development of neuroinflammation by inhibiting excessive activation of the Notch signaling pathway, thereby inhibiting neuroapoptosis.


Asunto(s)
Panax , Ratones , Animales , Panax/química , Proteómica , Cromatografía Liquida , Espectrometría de Masas/métodos , Glicoproteínas , Transducción de Señal
9.
BMC Plant Biol ; 22(1): 594, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36529733

RESUMEN

BACKGROUND: Ginseng polysaccharides, have been used to treat various diseases as an important active ingredient. Nevertheless, the biosynthesis of ginseng polysaccharides is poorly understood. To elucidate the biosynthesis mechanism of ginseng polysaccharides, combined the transcriptome analysis and polysaccharides content determination were performed on the roots, stems, and leaves collected from four cultivars of ginseng. RESULTS: The results indicated that the total contents of nine monosaccharides were highest in the roots. Moreover, the total content of nine monosaccharides in the roots of the four cultivars were different but similar in stems and leaves. Glucose (Glc) was the most component of all monosaccharides. In total, 19 potential enzymes synthesizing of ginseng polysaccharides were identified, and 17 enzymes were significantly associated with polysaccharides content. Among these genes, the expression of phosphoglucomutase (PGM), glucose-6-phosphate isomerase (GPI), UTP-glucose-1-phosphate uridylyltransferase (UGP2), fructokinase (scrK), mannose-1-phosphate guanylyltransferase (GMPP), phosphomannomutase (PMM), UDP-glucose 4-epimerase (GALE), beta-fructofuranosidase (sacA), and sucrose synthase (SUS) were correlated with that of MYB, AP2/ERF, bZIP, and NAC transcription factors (TFs). These TFs may regulate the expression of genes involved in ginseng polysaccharides synthesis. CONCLUSION: Our findings could provide insight into a better understanding of the regulatory mechanism of polysaccharides biosynthesis, and would drive progress in genetic improvement and plantation development of ginseng.


Asunto(s)
Panax , Transcriptoma , Panax/genética , Panax/metabolismo , Perfilación de la Expresión Génica , Polisacáridos/metabolismo , Monosacáridos
10.
Molecules ; 27(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364084

RESUMEN

Fourteen compounds were isolated from Pueraria lobata (Willd.) Ohwi by column chromatography and preparative thin-layer chromatography; the structures were identified by spectroscopic analysis and compared with data reported in the literature. Seven compounds were isolated and identified from Pueraria lobata for the first time: Linoleic acid, Sandwicensin, Isovanillin, Ethyl ferulate, Haginin A, Isopterofuran, 3'.7-Dihydroxyisoflavan. The other 10 compounds were structurally identified as follows: Lupenone, Lupeol, ß-sitosterol, Genistein, Medicarpin, Coniferyl Aldehyde, Syringaldehyde. All compounds were evaluated for their ability to inhibit SW480 and SW620 cells using the CCK-8 method; compound 5 (Sandwicensin) had the best activity, and compounds 6, 9, 11 and 12 exhibited moderate inhibitory activity. In addition, the targets and signaling pathways of Sandwicensin treatment for CRC were mined using network pharmacology, and MAPK3, MTOR, CCND1 and CDK4 were found to be closely associated with Sandwicensin treatment for CRC; the GO and KEGG analysis showed that Sandwicensin may directly regulate the cycle, proliferation and apoptosis of CRC cells through cancer-related pathways.


Asunto(s)
Isoflavonas , Neoplasias , Pueraria , Humanos , Pueraria/química , Raíces de Plantas/química , Genisteína , Isoflavonas/química
11.
Front Pharmacol ; 13: 1033017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278171

RESUMEN

Breast cancer (BC) is one of the most common malignant tumor, the incidence of which has increased worldwide in recent years. Ginsenosides are the main active components of Panax ginseng C. A. Mey., in vitro and in vivo studies have confirmed that ginsenosides have significant anti-cancer activity, including BC. It is reported that ginsenosides can induce BC cells apoptosis, inhibit BC cells proliferation, migration, invasion, as well as autophagy and angiogenesis, thereby suppress the procession of BC. In this review, the therapeutic effects and the molecular mechanisms of ginsenosides on BC will be summarized. And the combination strategy of ginsenosides with other drugs on BC will also be discussed. In addition, epigenetic changes, especially microRNAs (miRNAs) targeted by ginsenosides in the treatment of BC are clarified.

12.
Front Pharmacol ; 13: 1008222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172186

RESUMEN

MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.

13.
Sci Rep ; 12(1): 16312, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175444

RESUMEN

The existing multi-person collaborative design scheme of Building Information Modeling (BIM) integrated with blockchain faces problems such as poor reliability of BIM drawing, inconsistent drawing information, redundant information, and inaccurate protection of copyright interests. This paper proposes a multi-person collaborative design model for BIM drawing that combines blockchain and InterPlanetary File System (IPFS). This model uses blockchain to store drawing design information to protect the copyright interests of designers and combines IPFS to ensure the reliability of drawing. A cycle division mechanism is designed to solve the problem of drawing information synchronization when multiple people collaborate in design. The Semantic Differential Transaction (SDT) method is used to achieve incremental update of drawing and reduce the information redundancy of the blockchain. Finally, a comparative analysis and validation evaluation of the scheme is carried out, and the usability of the scheme is illustrated with an illustrative example. The results show that: (1) proposed scheme is feasible for multi-person collaborative design; (2) proposed scheme can effectively ensure the reliability of drawing and reduce the redundancy of blockchain information, so as to achieve copyright protection for designers.


Asunto(s)
Cadena de Bloques , Humanos , Registros , Reproducibilidad de los Resultados
14.
BMC Genomics ; 23(1): 325, 2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461216

RESUMEN

BACKGROUND: Ginsenoside, as the main active substance in ginseng, has the function of treating various diseases. However, the ginsenosides content of cultivated ginseng is obviously affected by the growth years, but the molecular mechanism is not clear. In addition, there are significant differences in morphology and physiology between wild ginseng and cultivated ginseng, and the effect of growth years on ginsenoside synthesis not yet understood in wild ginseng. RESULTS: Transcriptome sequencing on the roots, stems and leaves of cultivated ginseng and wild ginseng with different growth years was performed in this study, exploring the effect of growth years on gene expression in ginseng. The number of differentially expressed genes (DEGs) from comparison groups in cultivated ginseng was higher than that in wild ginseng. The result of weighted gene co-expression network analysis (WGCNA) showed that growth years significantly affected the gene expression of Mitogen-activated protein kinases (MAPK) signaling pathway and terpenoid backbone biosynthesis pathway in cultivated ginseng, but had no effects in wild ginseng. Furthermore, the growth years had significant effects on the genes related to ginsenoside synthesis in cultivated ginseng, and the effects were different in the roots, stems and leaves. However, it had little influence on the expression of genes related to ginsenoside synthesis in wild ginseng. Growth years might affect the expression of genes for ginsenoside synthesis by influencing the expression of these transcription factors (TFs), like my elob lastosis (MYB), NAM, ATAF1 and 2, and CUC2 (NAC), APETALA2/ethylene-responsive factor (AP2/ERF), basic helix-loop-helix (bHLH) and WRKY, etc., thereby affecting the content of ginsenosides. CONCLUSIONS: This study complemented the gaps in the genetic information of wild ginseng in different growth periods and helped to clarify the potential mechanisms of the effect of growth years on the physiological state in wild ginseng and cultivated ginseng, which also provided a new insight into the mechanism of ginsenoside regulation.


Asunto(s)
Ginsenósidos , Panax , Panax/genética , Panax/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
BMC Microbiol ; 22(1): 2, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979908

RESUMEN

BACKGROUND: The resources of wild ginseng have been reducing sharply, and it is mainly dependent on artificial cultivation in China, Korea and Japan. Based on cultivation modes, cultivated ginseng include understory wild ginseng (the seeds or seedlings of cultivated ginseng were planted under the theropencedrymion without human intervention) and farmland cultivated ginseng (grown in farmland with human intervention). Cultivated ginseng, can only be planted on the same plot of land consecutively for several years owing to soilborne diseases, which is mainly because of the variation in the soil microbial community. In contrast, wild ginseng can grow for hundreds of years. However, the knowledge of rhizosphere microbe communities of the wild ginseng is limited. RESULT: In the present study, the microbial communities in rhizosphere soils of the three types of ginseng were analyzed by high-throughput sequencing of 16 S rRNA for bacteria and internal transcribed spacer (ITS) region for fungi. In total, 4,381 bacterial operational taxonomic units (OTUs) and 2,679 fungal OTUs were identified in rhizosphere soils of the three types of ginseng. Among them, the shared bacterial OTUs was more than fungal OTUs by the three types of ginseng, revealing fungal communities were to be more affected than bacterial communities. In addition, the composition of rhizosphere microbial communities and bacterial diversity were similar between understory wild ginseng and wild ginseng. However, higher bacterial diversity and lower fungal diversity were found in rhizosphere soils of wild ginseng compared with farmland cultivated ginseng. Furthermore, the relative abundance of Chloroflexi, Fusarium and Alternaria were higher in farmland cultivated ginseng compared to wild ginseng and understory wild ginseng. CONCLUSIONS: Our results showed that composition and diversity of rhizosphere microbial communities were significantly different in three types of ginseng. This study extended the knowledge pedigree of the microbial diversity populating rhizospheres, and provided insights into resolving the limiting bottleneck on the sustainable development of P. ginseng crops, and even the other crops of Panax.


Asunto(s)
Microbiota , Panax/microbiología , Rizosfera , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Microbiota/genética , Panax/crecimiento & desarrollo , Suelo/química , Microbiología del Suelo
16.
Int J Biol Macromol ; 193(Pt A): 778-788, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34743938

RESUMEN

A component from ginseng in which sugars and proteins are covalently bound is named Panax ginseng glycoproteins (PGG). The contents of neutral carbohydrate, acid carbohydrate, and protein were 45.4%, 4.3% and 51.1%. The average molecular weight was 12,690 Da. The structure analysis showed that PGG had more than 1100 glycoproteins with molecular weight between 308.13 Da and 9991.52 Da, it was divided into two parts: long chain structure and short chain structure. These two parts were compared in molecular mass, number of amino acids, theoretical pI, instability index, aliphatic index and GRAVY. The in vivo distribution test of mice showed that PGG was enriched in mice testis, testicular tissue sections showed strong fluorescence signal expression on the surface of seminiferous tubules. We used cyclophosphamide (CP) to establish a mice model of oligoasthenozoospermia to investigate the anti-oligoasthenozoospermic effect of PGG. The results showed that PGG increased the levels of sex hormones T, FSH, PRL and sperm quality. Histopathology demonstrated that PGG promoted the differentiation process. The organ coefficient indicated that PGG had no obvious toxic and side effects. And the mechanism may be to affect the expression of protein levels such as p-ERK/ERK, p-AKT/AKT, Caspase-3, Bcl-2 and Bax. Therefore, PGG has the potential to develop into drugs for improving spermatogenic disorders.


Asunto(s)
Panax/metabolismo , Extractos Vegetales/farmacología , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Animales no Consanguíneos , Masculino , Ratones
17.
Chem Asian J ; 16(12): 1584-1591, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33904239

RESUMEN

Visible-light-driven photocatalytic Cr(VI) reduction is a promising pathway to moderate environmental pollution, in which the development of photocatalysts is pivotal. Herein, three hourglass-type phosphomolybdate-based hybrids with the formula of: (H2 bpe)3 [Zn(H2 PO4 )][Zn(bpe)(H2 O)2 ]H{Zn[P4 Mo6 O31 H6 ]2 } ⋅ 6H2 O (1) Na6 [H2 bz]2 [ZnNa4 (H2 O)5 ]{Zn [P4 Mo6 O31 H3 ]2 } ⋅ 2H2 O (2) and (H2 mbpy) {[Zn(mbpy)(H2 O)]2 [Zn(H2 O)]2 }{Zn[P4 Mo6 O31 H6 ]2 } ⋅ 10H2 O (3) (bpe=trans-1,2-bi(4-pyridyl)-ethylene; bz=4,4'-diaminobiphenyl; mbpy=4,4'-dimethyl-2,2'bipyridine) were synthesized under the guidance of the functional organic moiety modification strategy. Structural analysis showed that hybrids 1-3 have similar 2D layer-like spatial arrangements constructed by {Zn[P4 Mo6 ]2 } clusters and organic components with different conjugated degree. With excellent redox properties and wide visible-light absorption capacities, hybrids 1-3 display favourable photocatalytic activity for Cr(VI) reduction with 79%, 70% and 64% reduction rates, which are superior to that of only inorganic {Zn[P4 Mo6 ]2 } itself (21%). The investigation of organic components on photocatalytic performance of hybrids 1-3 suggested that the organic counter cations (bpe, bz and mbpy) can effectively affect the visible-light absorption, as well as the recombination of photogenerated carriers stemmed from {Zn[P4 Mo6 ]2 } clusters, further promoting their photocatalytic performances towards Cr(VI) reduction. This work provides an experimental basis for the design of functionalized photocatalysts via the modification of organic species.

18.
Int J Biol Macromol ; 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32437814

RESUMEN

Panax ginseng glycoproteins (PGG) has been shown biological activity, but researches in this field are rarely reported. In this paper, PGG were prepared by reflux and then purified with macroporous resin column. Further separation and purification of PGG using high performance liquid chromatography (HPLC) and two major components (PGG-1, PGG-2) were obtained. The molecular weights were calculated by gel permeation chromatography (GPC), and the results are 1.5 KDa and 8.2 KDa respectively. The MTT assay was used to study the cytoprotective effects of PGG, the results exhibited that PGG had significant effect (P < 0.01), and showed an obvious dose-effect relationship. Anti-apoptosis experiment results showed that PGG and PGG-2 can inhibit Aß-induced apoptosis in SH-SY5Y cells (P < 0.05), and PGG-2 displayed better activity. The structures of N- and O-glycan were determined by combination of LC-MS/MS and methylation analysis. The computed parameters of PGG determined by MS including the theoretical isoelectric point (pI), instability index, aliphatic index and grand average of hydropathicity (GRAVY) were summarized systematically. The distinct differences between two parts would affect the behavior of PGG in vivo. The results of activity test and bioinformatics analysis would guide the study of PGG in pharmacokinetics and mechanism.

19.
Int J Biol Macromol ; 150: 695-704, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061699

RESUMEN

Protein from Panax ginseng can improve learning, memory, and analgesia. Here, we investigated a fluorescence labeling method that can be used to determine the in vivo distribution of P. ginseng protein (PGP). High-performance liquid chromatography (HPLC) was used to define the amino acid composition and molecular weight of PGP; LC-MS/MS was used to identify the PGP structure, which was fluorescently-labeled using a fluorescein isothiocyanate (FITC) probe. The connection form of the PGP fluorescent marker (PGP-FITC) was identified by ultraviolet and infrared spectrophotometry. The in vivo distribution of PGP was observed by fluorescence imaging, and tissue content was determined. Results showed that PGP was enriched in the brain and that vascular epithelial cells showed specific uptake. We provide an experimental method to label and identify the in vivo distribution of PGP, which forms the basis for future studies to determine whether PGP can penetrate the blood-brain barrier (BBB) and elucidate the transport mechanism.


Asunto(s)
Panax/química , Proteínas de Plantas , Animales , Cromatografía Liquida , Ratones , Proteínas de Plantas/química , Proteínas de Plantas/farmacocinética , Proteínas de Plantas/farmacología , Conformación Proteica , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...