Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 919, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441694

RESUMEN

Bacteria from coast seawaters are widely known to induce larval recruitment of many invertebrates. However, whether and how deep-sea bacteria, that play crucial roles in the ecological and biogeochemical cycles, promote larval recruitment remains little known. Here, the interaction between deep-sea bacterial biofilms (BFs) and Mytilus coruscus larvae was tested. All these nine deep-sea bacterial isolates triggered planktonic-sessile transition, and the highest percentage of post-larvae was observed in Virgibacillus sp. 1 BF. Except for Pseudomonas sp. 3, Pseudoalteromonas sp. 32 and Bacillus sp. 13, other BF cell  densities were significantly related to their corresponding inductive efficiency. The deep-sea Virgibacillus sp. 1 BF's cue that triggers planktonic-sessile transition was uncovered. Treating Virgibacillus sp. 1 BFs through physic-chemical approaches reduced inducing impact and cell survival. The conditioned water collaborated with formalin-fixed Virgibacillus sp. 1 BF hoisted planktonic-sessile transition efficiency in comparison to each one alone. Thus, two signals derived from deep-sea bacteria trigger planktonic-sessile transition in M. coruscus. This finding firstly demonstrates that deep-sea bacteria has good potential for application in the mussel seed production and provides novel insight to clarify the bacteria-mussel interaction.


Asunto(s)
Larva/microbiología , Metamorfosis Biológica/fisiología , Mytilus/microbiología , Animales , Bacterias/metabolismo , Biopelículas/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Mytilus/crecimiento & desarrollo , Océanos y Mares , Agua de Mar
2.
Cancer Cell Int ; 19: 193, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31367191

RESUMEN

BACKGROUND: Breast cancer, the most common invasive cancer of women, is a malignant neoplasm and the second main cause of cancer death. Resistance to paclitaxel (Taxol), one of the frequently used chemotherapy agents for breast cancer, presents a major clinical challenge. Recent studies revealed that metabolic alterations of cancer cells play important roles in chemo-resistance. MATERIALS AND METHODS: In this study, Human breast cancer cells, BT474, SKBR3 and MCF7 were used to study the causal relationship between the lactate exporter, MCT1 (SLC16A1)-modulated glucose metabolism and Taxol resistance of breast cancer cells. Taxol resistant breast cancer cells were established. The intracellular lactate and extracellular lactate levels as well glucose uptake and oxygen consumption were measured. MicroRNA-124 expressions were detected by qRT-PCR from both breast cancer patient samples and breast cancer cells. Target of miR-124 was predicted and verified by Western blot and luciferase assay. An xenograft mice model was established and evaluated for the in vivo tumor therapeutic effects of MCT1 inhibitor plus microRNA-124 treatments. RESULTS: Low toxic Taxol treatments promoted cellular glucose metabolism and intracellular lactate accumulation with upregulated lactate dehydrogenase-A (LDHA) and MCT1 expressions. By establishing Taxol resistant breast cancer cell line, we found Taxol resistant cells exhibit upregulated LDHA and MCT1 expressions. Furthermore, glucose consumption, lactate production and intracellular ATP were elevated in Taxol resistant MCF7 cells compared with their parental cells. The miR-124, a tumor suppressive miRNA, was significantly downregulated in Taxol resistant cells. Luciferase assay and q-RT-PCR showed MCT1 is a direct target of miR-124 in both breast cancer cell lines and patient specimens. Moreover, co-treatment of breast cancer cells with either MCT1 inhibitor or miR-124 plus Taxol led to synergistically cytotoxic effects. Importantly, based on in vitro and in vivo results, inhibition of MCT1 significantly sensitized Taxol resistant cells. Finally, rescue experiments showed restoration of MCT1 in miR-124 overexpressing cells promoted Taxol resistance. CONCLUSIONS: This study reveals a possible role of miRNA-214-mediated Taxol resistance, contributing to identify novel therapeutic targets against chemoresistant breast cancers.

3.
Int J Clin Exp Pathol ; 12(5): 1888-1896, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31934012

RESUMEN

Breast cancer (BC) is a leading cause of cancer mortality in women worldwide. MAC30/Transmembrane protein 97 (TMEM97) is aberrantly up-regulated in many human carcinoma cells. However, the function of MAC30 in invasion and EMT of BC cells is uncertain. qRT-PCR was used to determine the level of MAC30 in BC tissues and cell lines. si-MAC30 was transfected into BC cells, and the effects of MAC30 silencing on the invasion and EMT were explored by qRT-PCR as well as transwell and western blot assays. Also, we determined the effects of MAC30 silencing on Wnt/ß-catenin and PI3K/Akt signaling pathways by western blot. We found that MAC30 is significantly up-regulated in BC tissues and cell lines. Down-regulation of MAC30 expression efficiently inhibited the invasion of BC cells. Furthermore, the EMT of BC cells was also inhibited by down-regulation of MAC30. Finally, we found that MAC30 knockdown inhibited Akt phosphorylation, ß-catenin, survivin, and cyclin D1 expressions. To our knowledge, this is the first report investigating the effect of MAC30 on invasion and EMT in BC cells by suppressing Wnt/ß-catenin and PI3K/Akt signaling pathways. MAC30 may be a potential therapeutic target for BC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...