Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 13(19): e035725, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39291491

RESUMEN

BACKGROUND: Stroke and traumatic intracranial hemorrhage (tICH) are major causes of disability worldwide, with stroke exerting significant negative effects on the brain, potentially elevating tICH risk. In this study, we investigated tICH risk in stroke survivors. METHODS AND RESULTS: Using relevant data (2017-2019) from Taiwan's National Health Insurance Research Database, we conducted a population-based retrospective cohort study. Patients were categorized into stroke and nonstroke groups, and tICH risk was compared using a Cox proportional-hazards model. Among 164 628 patients with stroke, 1004 experienced tICH. Patients with stroke had a higher tICH risk than nonstroke counterparts (adjusted hazard ratio [HR], 3.49 [95% CI, 3.17-3.84]). Subgroup analysis by stroke type revealed higher tICH risk in hemorrhagic stroke survivors compared with ischemic stroke survivors (HR, 5.64 [95% CI, 4.97-6.39] versus 2.87 [95% CI, 2.58-3.18], respectively). Older patients (≥45 years) with stroke had a higher tICH risk compared with their younger counterparts (<45 years), in contrast to younger patients without stroke (HR, 7.89 [95% CI, 6.41-9.70] versus 4.44 [95% CI, 2.99-6.59], respectively). Dementia and Parkinson disease emerged as significant tICH risk factors (HR, 1.69 [95% CI, 1.44-2.00] versus 2.17 [95% CI, 1.71-2.75], respectively). In the stroke group, the highest tICH incidence density occurred 3 months after stroke, particularly in patients aged >65 years. CONCLUSIONS: Stroke survivors, particularly those with hemorrhagic stroke and those aged ≥45 years, face elevated tICH risk. Interventions targeting the high-risk period are vital, with fall injuries potentially contributing to tICH incidence.


Asunto(s)
Hemorragia Intracraneal Traumática , Humanos , Taiwán/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Factores de Riesgo , Hemorragia Intracraneal Traumática/epidemiología , Incidencia , Medición de Riesgo , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Adulto , Bases de Datos Factuales , Accidente Cerebrovascular Hemorrágico/epidemiología , Accidente Cerebrovascular Hemorrágico/etiología , Factores de Edad
2.
Glob Chang Biol ; 30(8): e17464, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135434

RESUMEN

Enhanced silicate rock weathering (ERW) is an emerging strategy for carbon dioxide removal (CDR) from the atmosphere to mitigate anthropogenic climate change. ERW aims at promoting soil inorganic carbon sequestration by accelerating geochemical weathering processes. Theoretically, ERW may also impact soil organic carbon (SOC), the largest carbon pool in terrestrial ecosystems, but experimental evidence for this is largely lacking. Here, we conducted a 2-year field experiment in tropical rubber plantations in the southeast of China to evaluate the effects of wollastonite powder additions (0, 0.25, and 0.5 kg m-2) on both soil organic and inorganic carbon at 0-10 cm depth. We found that ERW significantly increased the concentration of SOC and HCO3 -, but the increases in SOC were four and eight times higher than that of HCO3 - with low- and high-level wollastonite applications. ERW had positive effects on the accrual of organic carbon in mineral-associated organic matter (MAOM) and macroaggregate fractions, but not on particulate organic matter. Path analysis suggested that ERW increased MAOM mainly by increasing the release of Ca, Si, and Fe, and to a lesser extent by stimulating root growth and microbial-derived carbon inputs. Our study indicates that ERW with wollastonite can promote SOC sequestration in stable MOAM in surface soils through both the soil mineral carbon pump and microbial carbon pump. These effects may have been larger than the inorganic CDR during our experiment. We argue it is essential to account for the responses of SOC in the assessments of CDR by ERW.


Asunto(s)
Secuestro de Carbono , Carbono , Bosques , Silicatos , Suelo , Suelo/química , Silicatos/química , Carbono/análisis , China , Compuestos de Calcio/química , Dióxido de Carbono/análisis , Minerales/química
3.
Proc Natl Acad Sci U S A ; 121(20): e2401398121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38728227

RESUMEN

Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.


Asunto(s)
Bosques , Nitrógeno , Hojas de la Planta , Árboles , Nitrógeno/metabolismo , Nitrógeno/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Árboles/metabolismo , Carbono/metabolismo , Carbono/química , Ecosistema , Taiga , Ciclo del Carbono
4.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747174

RESUMEN

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Asunto(s)
Fósforo , Raíces de Plantas , Silicatos , Microbiología del Suelo , Suelo , Fósforo/metabolismo , Suelo/química , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Silicatos/metabolismo , Micorrizas/fisiología , Compuestos de Calcio , Carbono/metabolismo
5.
Sci Total Environ ; 929: 172472, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642760

RESUMEN

High reactive nitrogen (N) emissions due to anthropogenic activities in China have led to an increase in N deposition and ecosystem degradation. The Chinese government has strictly regulated reactive N emissions since 2010, however, determining whether N deposition has reduced requires long-term monitoring. Here, we report the patterns of N deposition at a rural forest site (Qingyuan) in northeastern China over the last decade. We collected 456 daily precipitation samples from 2014 to 2022 and analysed the temporal dynamics of N deposition. NH4+-N, NO3--N, and total inorganic N (TIN) deposition ranged from 10.5 ± 3.5 (mean ± SD), 6.1 ± 1.6, and 16.6 ± 4.7 kg N ha-1 year-1, respectively. Over the measurement period, TIN deposition at Qingyuan decreased by 55 %, whereas that in comparable sites in East Asia declined by 14-34 %. We used a random forest model to determine factors influencing the deposition of NH4+-N, NO3--N, and TIN during the study period. NH4+-N deposition decreased by 60 % because of decreased agricultural NH3 emissions. Furthermore, NO3--N deposition decreased by 42 %, due to reduced NOx emissions from agricultural soil and fossil fuel combustion. The steep decline in N deposition in northeastern China was attributed to reduced coal consumption, improved emission controls on automobiles, and shifts in agricultural practices. Long-term monitoring is needed to assess regional air quality and the impact of N emission control regulations.

6.
Sci Total Environ ; 922: 171265, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417516

RESUMEN

The role of agricultural versus vehicle emissions in urban atmospheric ammonia (NH3) remains unclear. The lockdown due to the outbreak of COVID-19 provided an opportunity to assess the role of source emissions on urban NH3. Concentrations and δ15N of aerosol ammonium (NH4+) were measured before (autumn in 2017) and during the lockdown (summer, autumn, and winter in 2020), and source contributions were quantified using SIAR. Despite the insignificant decrease in NH4+ concentrations, significantly lower δ15N-NH4+ was found in 2020 (0.6 ± 1.0‰ in PM2.5 and 1.4 ± 2.1‰ in PM10) than in 2017 (15.2 ± 6.7‰ in PM2.5), which indicates the NH3 from vehicle emissions has decreased by∼50% during the lockdown while other source emissions are less affected. Moreover, a reversed seasonal pattern of δ15N-NH4+ during the lockdown in Changsha has been revealed compared to previous urban studies, which can be explained by the dominant effect of non-fossil fuel emissions due to the reductions of vehicle emissions during the lockdown period. Our results highlight the effects of lockdown on aerosol δ15N-NH4+ and the importance of vehicle emissions to urban atmospheric NH3, providing conclusive evidence that reducing vehicle NH3 emissions could be an effective strategy to reduce PM2.5 in Chinese megacities.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Compuestos de Amonio/análisis , Isótopos de Nitrógeno/análisis , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Aerosoles y Gotitas Respiratorias , Amoníaco/análisis , Material Particulado/análisis , China
7.
Glob Chang Biol ; 30(1): e17156, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273526

RESUMEN

Evidence is emerging that microbial products and residues (necromass) contribute greatly to stable soil organic matter (SOM), which calls for the necessity of separating the microbial necromass from other SOM pools in models. However, the understanding on how microbial necromass stabilizes in soil, especially the mineral protection mechanisms, is still lacking. Here, we incubated 13 C- and 15 N-labelled microbial necromass in a series of artificial soils varying in clay minerals and metal oxides. We found the mineralization, adsorption and desorption rate constants of necromass nitrogen were higher than those of necromass carbon. The accumulation rates of necromass carbon and nitrogen in mineral-associated SOM were positively correlated with the specific surface area of clay minerals. Our results provide direct evidence for the protection role of mineral in microbial necromass stabilization and provide a platform for simulating microbial necromass separately in SOM models.


Asunto(s)
Carbono , Suelo , Suelo/química , Nitrógeno , Arcilla , Minerales/química , Isótopos , Microbiología del Suelo
8.
Environ Sci Technol ; 58(2): 1177-1186, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38170897

RESUMEN

Ammonia (NH3) volatilization from agricultural lands is a main source of atmospheric reduced nitrogen species (NHx). Accurately quantifying its contribution to regional atmospheric NHx deposition is critical for controlling regional air nitrogen pollution. The stable nitrogen isotope composition (expressed by δ15N) is a promising indicator to trace atmospheric NHx sources, presupposing a reliable nitrogen isotopic signature of NH3 emission sources. To obtain more specific seasonal δ15N values of soil NH3 volatilization for reliable regional seasonal NH3 source partitioning, we utilized an active dynamic sampling technique to measure the δ15N-NH3 values volatilized from maize cropping land in northeast China. These values varied from -38.0 to -0.2‰, with a significantly lower rate-weighted value observed in the early period (May-June, -30.5 ± 6.7‰) as compared with the late period (July-October, -8.5 ± 4.3‰). Seasonal δ15N-NH3 variations were related to the main NH3 production pathway, degree of soil ammonium consumption, and soil environment. Bayesian isotope mixing model analysis revealed that without considering the seasonal δ15N variation in soil-volatilized NH3 could result in an overestimate by up to absolute 38% for agricultural volatile NH3 to regional atmospheric bulk ammonium deposition during July-October, further demonstrating that it is essential to distinguish seasonal δ15N profile of agricultural volatile NH3 in regional source apportionment.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Amoníaco/análisis , Isótopos de Nitrógeno/análisis , Estaciones del Año , Ecosistema , Teorema de Bayes , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Compuestos de Amonio/análisis , Nitrógeno/análisis , China , Suelo , Productos Agrícolas
9.
Sci Bull (Beijing) ; 69(7): 978-987, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242834

RESUMEN

Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (∼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.

10.
Water Res ; 250: 121031, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134860

RESUMEN

Subsurface wastewater infiltration system (SWIS) has been recognized as a cost-effective and environmentally friendly tool for wastewater treatment. However, there is a lack of knowledge on the transformation processes of nitrogen (N), hindering the improvement of the N removal efficiency in SWIS. Here, the migration and transformation mechanisms of ammonium (NH4+-N) and nitrate (NO3+-N) over 10 days were explored by 15N labeling technique. Over the study period, 49% of the added 15NH4+-N remained in the soil, 29% was removed via gaseous N emissions, and 14% was leaked with the effluent in the SWIS. In contrast, only 11% of the added 15NO3--N remained in the soil while 65% of the added 15NO3--N was removed via gaseous N emissions, and 12% with the effluent in the SWIS. The main pathway for N2O emission was denitrification (52-70%) followed by nitrification (15-28%) and co-denitrification (9-20%). Denitrification was also the predominant pathway for N loss as N2, accounting for 88-96% of the N2 emission. The dominant biological transformation processes were different at divergent soil depths, corresponding to nitrification zone and denitrification zone along the longitudinal continuum in SWIS, which was confirmed by the expression patterns of microbial gene abundance. Overall, our findings reveal the mechanism of N transformation in SWIS and provide a theoretical basis for establishing a pollutant management strategy and reducing greenhouse gas emissions from domestic wastewater treatment.


Asunto(s)
Compuestos de Amonio , Gases de Efecto Invernadero , Aguas Residuales , Nitratos , Desnitrificación , Nitrificación , Nitrógeno/metabolismo , Suelo , Óxido Nitroso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...