RESUMEN
Coastal wetlands are among the most productive and dynamic ecosystems globally, contributing significantly to atmospheric methane (CH4) emissions. The widespread conversion of these wetlands into aquaculture ponds degrades these ecosystems, yet its effects on CH4 production and associated microbial mechanisms are not well understood. This study aimed to assess the impact of land conversion on CH4 production potential, total and active soil organic C (SOC) content, and microbial communities. We conducted a comparative study on three brackish marshes and adjacent aquaculture ponds in southeastern China. Compared to costal marshes, aquaculture ponds exhibited significantly (P < 0.05) lower CH4 production potential (0.05 vs. 0.02 µg kg-1 h-1), SOC (17.64 vs. 6.97 g kg-1), total nitrogen (TN) content (1.62 vs. 1.24 g kg-1) and carbon/nitrogen (C/N) ratio (10.85 vs. 5.66). CH4 production potential in aquaculture ponds was influenced by both microbial and abiotic factors. Specifically, the relative abundance of Methanosarcina slightly decreased in aquaculture ponds, while the potential for CH4 production declined with lower SOC contents and C/N ratio. Overall, our findings demonstrate that converting natural coastal marshes into aquaculture ponds reduces CH4 production by altering key soil properties and the structure and diversity of methanogenic archaea communities. These results provide empirical evidence to enhance global carbon models, improving predictions of carbon feedback from wetland land conversion in the context of climate change.
RESUMEN
Organic soil amendments have been widely adopted to enhance soil organic carbon (SOC) stocks in agroforestry ecosystems. However, the contrasting impacts of pyrogenic and fresh organic matter on native SOC mineralization and the underlying mechanisms mediating those processes remain poorly understood. Here, an 80-day experiment was conducted to compare the effects of maize straw and its derived biochar on native SOC mineralization within a Moso bamboo (Phyllostachys edulis) forest soil. The quantity and quality of SOC, the expression of microbial functional genes concerning soil C cycling, and the activity of associated enzymes were determined. Maize straw enhanced while its biochar decreased the emissions of native SOC-derived CO2. The addition of maize straw (cf. control) enhanced the O-alkyl C proportion, activities of ß-glucosidase (BG), cellobiohydrolase (CBH) and dehydrogenase (DH), and abundances of GH48 and cbhI genes, while lowered aromatic C proportion, RubisCO enzyme activity, and cbbL abundance; the application of biochar induced the opposite effects. In all treatments, the cumulative native SOC-derived CO2 efflux increased with enhanced O-alkyl C proportion, activities of BG, CBH, and DH, and abundances of GH48 and cbhI genes, and with decreases in aromatic C, RubisCO enzyme activity and cbbL gene abundance. The enhanced emissions of native SOC-derived CO2 by the maize straw were associated with a higher O-alkyl C proportion, activities of BG and CBH, and abundance of GH48 and cbhI genes, as well as a lower aromatic C proportion and cbbL gene abundance, while biochar induced the opposite effects. We concluded that maize straw induced positive priming, while its biochar induced negative priming within a subtropical forest soil, due to the contrasting microbial responses resulted from changes in SOC speciation and compositions. Our findings highlight that biochar application is an effective approach for enhancing soil C stocks in subtropical forests.
Asunto(s)
Carbono , Carbón Orgánico , Bosques , Suelo , Zea mays , Carbón Orgánico/química , Suelo/química , Microbiología del SueloRESUMEN
Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral-associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM (> 70 %) and increased with salinity (70 %-76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 %-81 %) and N (52 %-82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 %-64 %) and N pool (8.6 %-59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.
RESUMEN
Atmospheric nitrogen (N) deposition inevitably alters soil nutrient status, subsequently prompting plants to modify their root morphology (i.e., adopting a do-it-yourself strategy), mycorrhizal symbioses (i.e., outsourcing strategy), and root exudation (i.e., nutrient-mining strategy) linking with resource acquisition. However, how N deposition influences the integrated pattern of these resource-acquisition strategies remains unclear. Furthermore, most studies in forest ecosystems have focused on understory N and inorganic N deposition, neglecting canopy-associated processes (e.g., N interception and assimilation) and the impacts of organic N on root functional traits. In this study, we compared the effects of canopy vs understory, organic vs inorganic N deposition on eight root functional traits of Moso bamboo plants. Our results showed that N deposition significantly decreased arbuscular mycorrhizal fungi (AMF) colonization, altered root exudation rate and root foraging traits (branching intensity, specific root area, and length), but did not influence root tissue density and N concentration. Moreover, the impacts of N deposition on root functional traits varied significantly with deposition approach (canopy vs. understory), form (organic vs. inorganic), and their interaction, showing variations in both intensity and direction (positive/negative). Furthermore, specific root area and length were positively correlated with AMF colonization under canopy N deposition and root exudation rate in understory N deposition. Root trait variation under understory N deposition, but not under canopy N deposition, was classified into the collaboration gradient and the conservation gradient. These findings imply that coordination of nutrient-acquisition strategies dependent on N deposition approach. Overall, this study provides a holistic understanding of the impacts of N deposition on root resource-acquisition strategies. Our results indicate that the evaluation of N deposition on fine roots in forest ecosystems might be biased if N is added understory.
Asunto(s)
Micorrizas , Nitrógeno , Raíces de Plantas , Raíces de Plantas/metabolismo , Nitrógeno/metabolismo , Micorrizas/fisiología , Suelo/química , Bosques , China , Simbiosis , SasaRESUMEN
Colloidal phosphorus (P) is an important P form in agricultural runoff and can threaten water quality. However, up to date, there are few effective approaches to mitigate colloidal P pollution. This study investigated the effect of ultraviolet (UV) irradiation on medium-colloidal (MC; 220 nm-450 nm) and fine-colloidal (FC; 3 kDa-220 nm) P in agricultural runoff. Under 24 h of UV irradiation, as the most abundant colloidal P fraction, concentration of total P (TP) in FC consistently decreased by 81.0%, while TP concentration in MC first increased by 74.4% after 3 h and then decreased with irradiation time. At the same time, particulate TP (>450 nm) concentration was found to be increased from 0 to 14.7 µM. However, there were no obvious variations in TP concentrations in FC and MC fractions under dark conditions. In FC fraction, with the decrease of TP, the corresponding concentrations of iron (Fe), aluminum (Al), silicon (Si) declined synchronously, and ferric iron/ferrous iron (Fe(III)/Fe(II)) ratio and organic matter (OM) concentration were reduced as well. These results suggested that P in FC fraction was gradually transformed into particulate P during photoreduction of Fe(III) and photodegradation of OM under UV irradiation. Our study helps to understand the mechanism of the phototransformation of colloidal P, and propose an UV irradiation-based approach to remove colloidal P in agricultural runoff.
Asunto(s)
Compuestos Férricos , Fósforo , Fósforo/análisis , Agricultura , Calidad del Agua , HierroRESUMEN
Coastal wetlands contribute to the mitigation of climate change through the sequestration of "blue carbon". Microbial necromass, lignin, and glycoproteins (i.e., glomalin-related soil proteins (GRSP)), as important components of soil organic carbon (SOC), are sensitive to environmental change. However, their contributions to blue carbon formation and the underlying factors remain largely unresolved. To address this paucity of knowledge, we investigated their contributions to blue carbon formation along a salinity gradient in coastal marshes. Our results revealed decreasing contributions of microbial necromass and lignin to blue carbon as the salinity increased, while GRSP showed an opposite trend. Using random forest models, we showed that their contributions to SOC were dependent on microbial biomass and resource stoichiometry. In N-limited saline soils, contributions of microbial necromass to SOC decreased due to increased N-acquisition enzyme activity. Decreases in lignin contributions were linked to reduced mineral protection offered by short-range-ordered Fe (FeSRO). Partial least-squares path modeling (PLS-PM) further indicated that GRSP could increase microbial necromass and lignin formation by enhancing mineral protection. Our findings have implications for improving the accumulation of refractory and mineral-bound organic matter in coastal wetlands, considering the current scenario of heightened nutrient discharge and sea-level rise.
Asunto(s)
Carbono , Suelo , Lignina , Glicoproteínas , Proteínas Fúngicas , MineralesRESUMEN
The study of vegetation phenology changes is important because it is a sensitive indicator of climate change, affecting the exchange of carbon, energy and water fluxes between the land and the atmosphere. Previous studies have focused on the effects of climatic factors among environmental factors on vegetation phenology, thus the effects of non-climatic factors among environmental factors have not been well quantified. This study endeavors to scrutinize the spatiotemporal inconsistency in the start-of-season (SOS) and the end-of-season (EOS) on the Tibetan Plateau (TP) and to quantify the effects of environmental factors on phenology. To this end, the Moderate-resolution Imaging Spectroradiomater (MODIS) Normalized Difference Vegetation Index (NDVI) data from 2001 to 2018 and four common used methods were employed to extract SOS and EOS, and the site data was used to select the most appropriate phenology results. The Geodetector model was used to assess and measure the explanatory power of different environmental factors. The research results indicate that temperature exerts a more substantial impact on phenology than precipitation on TP. non-climatic factors such as longitude, latitude, and elevation are more influential in determining the distribution of phenological trends than climatic factors. Among these non-climatic factors, latitude has the most prominent effect on the trends of SOS. Furthermore, non-climatic factors exhibit a stronger effect on SOS, whereas EOS is more susceptible to climatic factors and less influenced by non-climatic factors. These discoveries bear great significance in comprehending the intricate outcomes of regional changes on vegetation phenology and enhancing phenology models.
RESUMEN
The bioavailability for varied-size phosphorus (P)-binding colloids (Pcoll) especially from external P sources in soil terrestrial ecosystems remains unclear. This study evaluated the differential contribution of various-sized biogas slurry (BS)-derived colloids to plant available P uptake in the rhizosphere and the corresponding patterns of phosphatase response. Keeping the same content of total P input (15 mg kg-1), we applied different size-fractioned BS-derived colloids including nanosized colloids (NCs, 1-20 nm), fine-sized colloids (FCs, 20-220 nm), and medium-sized colloids (MCs, 220-450 nm) respectively to conduct a 45-day rice (Oryza sativa L.) rhizotron experiment. During the whole cultivation period, the dynamics of chemical characteristics and P fractions in each experimental rhizosphere soil solution were analyzed. The spatial and temporal dynamics examination of P-transforming enzymes (acid phosphatases) in the rice rhizosphere was visualized by a soil zymography technique after 5, 25, and 45 days of rice transplantation. The results indicated that the acid phosphatase activities and its hot spot areas were significantly 1) correlated with the relative bioavailability of colloidal P (RBAcoll), 2) increased with the colloid-free (truly dissolved P) and BS-derived NC addition, and 3) affected by the plant growth stage. With the nanosized BS colloid addition, the RBAcoll and plant biomass were respectively found to be the highest (64% and 1.22 g plant-1), in which the acid phosphatase-catalyzed hydrolysis of organic Pcoll played an important role. All of the above suggested that nanosized BS-derived colloids are an effective alternative to conventional phosphorus fertilizer for promoting plant P uptake and P bioavailability.
Asunto(s)
Biocombustibles , Oryza , Monoéster Fosfórico Hidrolasas , Ecosistema , Suelo/química , Coloides/química , Fertilizantes , Fósforo , Fosfatasa ÁcidaRESUMEN
Colloidal phosphorus (CP) has high mobility and great loss risk; their biogeochemical processes are influenced by agricultural management such as redox oscillation and biochar-amendment application. This study monitored CP concentration in pore-water, soil P species and P adsorption capacity, to investigate CP release from paddy soils as affected by the interactive effects of oxygen status (continuous anoxic/oxic for 12 days, CA/CO; intermittent anoxic for 2, 4, 6, 8, 10 days during the 12-day cycle, IA2-10) and management (soil only, CK; bulk/micro/nano-sized biochar with various properties: SBBulk, SBMicro, and SBNano). Compared to the control (0.25-0.84 mg L-1, CK-CA), the single intermittent anoxic treatment (CK-IA) reduced CP concentrations by 45 %, due to the rise of Eh and pH and the decline of the degree of P saturation along with the increased soil Fe/Al-P and organic-P. Longer anoxic duration under the CK-IA reduced CP release, probably donated from massive production of redox-stable amorphous Fe/Al-bound P. The single biochar treatment (SB-CA: SBBulk-CA > SBMicro-CA > SBNano-CA) decreased CP release by 37 % as compared to the CK-CA, ascribed to the increased soil pH, Eh, and P adsorption capacity. The combined treatment (SB-IA: SBBulk-IA2 > SBNano-IA10) synergistically reduced CP release by 68 % in comparison with the CK-CA, due to the increase of adsorption through interactions of soil Fe/Al/Ca- and organic-P. Therefore, nano-sized biochar and long intermittent anoxic duration are recommended for reducing CP release from paddy soils.
Asunto(s)
Fósforo , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Carbón OrgánicoRESUMEN
Developing metal-based nanocomposites as adsorbent for phosphorus (P) removal is a simple and effective strategy, while the separation of nanoscale adsorbents from water after adsorption is a tedious job. In this work, a novel Zr/Zn nanocomposite (Zr/Zn NCs) modified ceramsite (ZZMC) was synthesized to enhance P removal from agricultural drainage water. Characterization results showed that Zr/Zn NCs with fusiform nanostructures were uniformly loaded on the ceramsite, hence depending on the high mechanical strength and large size of ceramsite, the Zr/Zn NCs can be conveniently handled and separated after adsorption with P. The common issues of weak adsorption capacity and short using life related to ceramsite for P removal in wastewater were also significantly improved in complementarity combination with Zr/Zn NCs. The ZZMC exhibited higher P removal efficiency (>90%) at 5 mg-P L-1 in a wide pH range (5-9) than bulk ceramsite (<10%) and performed well when other ions were co-existed. For two real agricultural drainage water samples with total phosphorus (TP) of 0.526 mg-P L-1 and 0.865 mg-P L-1, the ZZMC demonstrated desirable adsorption performance not only for truly dissolved P (<3 kDa; >85%), but also for fine colloidal P (3 kDa-220 nm; 76.1%-79.1%) and medium colloidal P (220-450 nm; 80.7%-82.2%) within 30 adsorption cycles that included two-time regeneration treatments towards this material. Moreover, the adsorption capacity of TP by ZZMC after two regenerated treatments was more than 90% of that of fresh ZZMC. The results revealed the feasibility to remove different-sized P at low concentration for agricultural drainage water by ZZMC.
Asunto(s)
Nanocompuestos , Fósforo , Agua , ZincRESUMEN
Adding industrial and agricultural wastes to farmland can increase soil available phosphorus (P) pool and boost crop production, but the process affecting soil P transformation and bioavailability is still poorly understood. We studied the effects of straw (ST), biochar (BC) and Si-modified biochar (Si-BC) amendments on the available-P content and its fraction transformation in rice-paddy soils. Our results showed that these three soil amendments significantly increased the concentrations of both microbial biomass carbon (MBC) and microbial biomass-P (MBP) during the first rice season; by contrast, the effects of ST and BC application were relatively poor on acid-phosphatase (ACP) activity, which was increased by 24 % under ST and 14 % under BC. Soil total P concentrations did not differ significantly, although the concentration and percentage of each P-fraction were altered significantly among treatments. Although all three applications increase soil available-P concentration by promoting the transformation of organic-P (Po) components to inorganic-P (Pi), there are differences in the transformation efficiency of the soil P fraction between these amendments. Redundancy analysis results also showed significant clustering of soil P-fraction transformations after ST and BC treatments. Structural equation model analysis further indicated that all amendments regulated microbial processes by changing soil pH and dissolved organic carbon (DOC), thereby promoting soil P transformation and improving P efficiency. Sodium bicarbonate-extractable Po (NaHCO3-Po) contributed most to soil available-P under the different amendments. Compared to ST and Si-BC, BC application improved more soil microbial status and the transformation of soil unavailable-P into available-P, therefore the application of BC in rice fields is the most beneficial method to promote phosphorus use and production sustainability in rice. These findings helped to understand the effects of using industrial and agricultural waste (e.g. straw, biochar and Si-modified biochar) on soil P-fractions and so provided a reference for sustainable resource use and green production in rice-paddy ecosystems.
RESUMEN
Introduction: Biochar has been shown to be an effective soil amendment for promoting plant growth and improving nitrogen (N) utilization. However, the physiological and molecular mechanisms behind such stimulation remain unclear. Methods: In this study, we investigated whether biochar-extracted liquor including 21 organic molecules enhance the nitrogen use efficiency (NUE) of rice plants using two N forms (NH4 +-N and NO3 --N). A hydroponic experiment was conducted, and biochar-extracted liquor (between 1 and 3% by weight) was applied to rice seedlings. Results: The results showed that biochar-extracted liquor significantly improved phenotypic and physiological traits of rice seedlings. Biochar-extracted liquor dramatically upregulated the expression of rice N metabolism-related genes such as OsAMT1.1, OsGS1.1, and OsGS2. Rice seedlings preferentially absorbed NH4 +-N than NO3 --N (p < 0.05), and the uptake of NH4 +-N by rice seedlings was significantly increased by 33.60% under the treatment of biochar-extracted liquor. The results from molecular docking showed that OsAMT1.1protein can theoretically interact with 2-Acetyl-5-methylfuran, trans-2,4-Dimethylthiane, S, S-dioxide, 2,2-Diethylacetamide, and 1,2-Dimethylaziridine in the biochar-extracted liquor. These four organic compounds have similar biological function as the OsAMT1.1 protein ligand in driving NH4 +-N uptakes by rice plants. Discussion: This study highlights the importance of biochar-extracted liquor in promoting plant growth and NUE. The use of low doses of biochar-extracted liquor could be an important way to reduce N input in order to achieve the purpose of reducing fertilizer use and increasing efficiency in agricultural production.
RESUMEN
Heat stress transcription factors (HSFs) are the major regulators of plant response to environmental stress, especially heat and drought stress. To gain a deeper understanding of the mechanisms underlying HSFs in the abiotic stress response of passion fruit, we conducted an in silico analysis of the HSF gene family. Through bioinformatics and phylogenetic analyses, we identified 18 PeHSF members and classified them into A, B, and C groups. Collinearity analysis results revealed that the expansion of the PeHSF gene family was due to the presence of segmental duplication. Furthermore, gene structure and protein domain analysis illustrated that PeHSFs in the same subgroup are relatively conserved. Conserved motif and function domain analysis suggested that PeHSF proteins possess typical conserved functional domains of the HSF family. A protein interaction network and 3D structure prediction were used to study the potential regulatory relationship of PeHSFs. Additionally, the subcellular localization results of PeHSF-A6a, PeHSF-B4b, and PeHSF-C1a were consistent with the predictions. RNA-seq and RT-qPCR analysis revealed the expression patterns of PeHSFs in different tissues of passion fruit floral organs. Promoter analysis and the expression patterns of the PeHSFs under different treatments demonstrated their involvement in various abiotic stress processes. Notably, overexpression of PeHSF-C1a consistently enhanced tolerance to drought and heat stress in Arabidopsis. Overall, our findings provide a scientific basis for further functional studies of PeHSFs that could contribute to improvement of passion fruit breeding.
Asunto(s)
Passiflora , Factores de Transcripción , Factores de Transcripción/metabolismo , Presión Osmótica , Filogenia , Passiflora/metabolismo , Frutas/genética , Frutas/metabolismo , Secuencia de Aminoácidos , Fitomejoramiento , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
Phosphorus (P) availability and loss risk are linked to P species; however, their alternations in the soil amended with biochar-blended organic fertilizer is not well known, particularly under contrasting soil properties and land management. In this study, the variance of soil P species extracted by sequential chemical extraction (SCE) and 31P NMR techniques, as well as the degree of P saturation (DPS), were investigated throughout three paddy and three vegetable fields. These fields were amended with three different fertilizers at the same P application rate: chemical fertilizer (CF), organic fertilizer substitution (sheep manure/biogas slurry, SM/BS), and biochar-blended organic fertilizer substitution (BSM/BBS). Results showed that the BSM/BBS and SM increased the total P contents by 7.5% and 5.9% (TP) and available P contents by 30.1% and 19.2% (AP), but decreased the DPS values by 19.4% and 11.7%, compared to the CF treatment. Yet, the BS decreased the TP and AP contents but increased the DPS values across the experimental sites. In the BSM/BBS amended soils, high AP contents were due to the increased inorganic P (NaHCO3-Pi), while the increased organic P (monoester and DNA) induced low DPS values and reduced soil P loss risk. Our study highlights that biochar-blended organic fertilizer is an effective agronomic way for improving P availability and decreasing P loss risk via the alteration of soil P species.
Asunto(s)
Fósforo , Suelo , Animales , Ovinos , Suelo/química , Fósforo/química , Fertilizantes , Carbón Orgánico , EstiércolRESUMEN
Wetland soil denitrification removes excess inorganic nitrogen (N) and prevents eutrophication in aquatic ecosystems. Wetland plants have been considered the key factors determining the capacity of wetland soil denitrification to remove N pollutants in aquatic ecosystems. However, the influences of various plant communities on wetland soil denitrification remain unknown. In the present study, we measured variations in soil denitrification under different herbaceous plant communities including single Phragmites karka (PK), single Paspalum thunbergia (PT), single Zizania latifolia (ZL), a mixture of Paspalum thunbergia plus Phragmites karka (PTPK), a mixture of Paspalum thunbergia plus Zizania latifolia (PTZL), and bare soil (CK) in the Estuary of Nantiaoxi River, the largest tributary of Qingshan Lake in Hangzhou, China. The soil denitrification rate was significantly higher in the surface (0-10 cm) than the subsurface (10-20 cm) layer. Wetland plant growth increased the soil denitrification rate by significantly increasing the soil water content, nitrate concentration, and ln(nirS) + ln(nirK). A structural equation model (SEM) showed that wetland plants indirectly regulated soil denitrification by altering the aboveground and belowground plant biomass, nitrate concentration, abundances of denitrifying functional genes, and denitrification potential. There was no significant difference in soil denitrification rates among PT, PK and ZL. The soil denitrification rate was significantly lower in PTZL than PTPK. Two-plant communities did not necessarily enhance the denitrification rate compared to single planting, the former had a greater competitiveness on N uptake and consequently reduced the amount of nitrate available for denitrification. As PTPK had the highest denitrification rate, co-planting P. thunbergia and P. karka could effectively improve N removal efficiency and help mitigate eutrophication in adjacent aquatic ecosystems. The results of this investigation provide useful information guiding the selection of appropriate wetland herbaceous plant species for wetland construction and the removal of N pollutants in aquatic ecosystems.
Asunto(s)
Contaminantes Ambientales , Humedales , Ecosistema , Nitratos , Desnitrificación , Plantas , Suelo/química , Poaceae , Microbiología del Suelo , NitrógenoRESUMEN
Colloidal phosphorus (Pcoll) in paddy soils can pose a serious threat to the water environment. Biochar amendment not only directly absorb Pcoll to reduce the runoff loss, but also create hotspots for microbial communities which simultaneously affects soil Pcoll. However, despite the crucial role of microorganisms, it remains elusive regarding how biochar and its feedstock types affect the relationships of soil microbial communities and Pcoll in soil matrix (such as at soil aggregate level). To address the knowledge gap, we explored the (in)direct effects of biochar on the soil Pcoll in physically separated fractions including micro- (53-250 µm) and macroaggregates (250-2000 µm). Results showed that straw and manure biochars decreased the soil Pcoll content by 55.2-56.7% in microaggregates and 41.2-48.4% in macroaggregates after 120 days of incubation, compared to the respective control. The fungal communities showed a significantly correlation (0.34, p < 0.05) with Pcoll content in the macroaggregates, whereas the bacterial communities were extremely significantly correlated (0.66, p < 0.001) with Pcoll content in the microaggregates. Furthermore, the partial least squares path model analysis indicated that biochar amendments directly increased Pcoll content (0.76 and 0.61) in micro- and macroaggregates, but the reduced Pcoll content by biochar was mainly derived from indirect effects, such as changed soil biological characteristics carbon (C)/P (-0.69), microbial biomass C (-0.63), microbial biomass P (-0.68), keystone taxa Proteobacteria (-0.63), and Ascomycota (-0.59), particularly for the macroaggregates. This study highlights that to some extent, biochar addition can reduce soil Pcoll content by affecting microbial communities (some keystone taxa), and soil biological characteristics at soil aggregate level.
Asunto(s)
Microbiota , Suelo , Fósforo , Microbiología del Suelo , Carbón OrgánicoRESUMEN
Passion fruit is a tropical fruit crop with significant agricultural, economic and ornamental values. The growth and development of passion fruit are greatly affected by climatic conditions. In plants, the basic helix-loop-helix (bHLH) gene family plays essential roles in the floral organ and fruit development, as well as stress response. However, the characteristics and functions of the bHLH genes of passion fruit remain unclear. Here, 138 passion fruit bHLH members were identified and classified into 20 subfamilies. The structural analysis illustrated that PebHLH proteins of the specific subfamily are relatively conserved. Collinearity analysis indicated that the expansion of the PebHLH gene family mainly took place by segmental duplication, and the structural diversity of duplicated genes might contribute to their functional diversity. PebHLHs, which potentially regulate different floral organ and fruit development, were further screened out, and many of these genes were differentially expressed under various stress treatments. The co-presence of different cis-regulatory elements involved in developmental regulation, hormone and stress responses in the promoter regions of PebHLHs might be closely related to their diverse regulatory roles. Overall, this study will be helpful for further functional investigation of PebHLHs and provides clues for improvement of the passion fruit breeding.
Asunto(s)
Passiflora , Passiflora/genética , Frutas/genética , Fitomejoramiento , Genoma de Planta/genética , Estrés Fisiológico/genética , Filogenia , Regulación de la Expresión Génica de las PlantasRESUMEN
Conversion of forestland to intensively managed agricultural land occurs worldwide and can increase soil nitrous oxide (N2O) emissions by altering the transformation processes of nitrogen (N) cycling related microbes and environmental conditions. However, little research has been conducted to assess the relationships between nitrifying and denitrifying functional genes and enzyme activities, the altered soil environment and N2O emissions under forest conversion in subtropical China. Here, we investigated the long-term (two decades) effect of converting natural forests to intensively managed tea (Camellia sinensis L.) plantations on soil potential N2O emissions, inorganic N concentrations, functional gene abundances of nitrifying and denitrifying bacteria, as well as nitrifying and denitrifying enzyme activities in subtropical China. The conversion significantly increased soil potential N2O emissions, which were regulated directly by increased denitrifying enzyme activity (52 %) and nirS + nirK gene abundance (38 %) as shown by structural equation modeling, and indirectly by AOB-amoA gene abundance and inorganic N concentration. Our results indicate that converting natural forests to tea plantations directly increases soil inorganic N concentration, resulting in increases in the abundance of soil nitrifying and denitrifying microorganisms and the associated N2O emissions. These findings are crucial for disentangling the factors that directly and indirectly affect soil potential N2O emissions respond to the conversion of forest to tea plantation.
Asunto(s)
Óxido Nitroso , Suelo , Desnitrificación , Nitrógeno , Óxido Nitroso/análisis , Microbiología del Suelo , TéRESUMEN
Agronomic management practices present an opportunity to improve the sustainability of crop production, including reductions of greenhouse gas emissions through impacts on soil organic carbon (SOC) dynamics. We investigated the impacts of contrasting application rates of nitrogen (N)-enriched biochar (4 and 8 t ha-1) on the concentrations of total and active SOC, microbial biomass carbon (MBC), soil aggregates, and the carbon (C) pool management index (CPMI) as an indicator of soil quality in tillering and mature subtropical early and late rice in China. Soil salinity and soil bulk density increased, and soil water content generally decreased under the application of N-enriched biochar at 4 t ha-1. Following the application of the biochar, there were greater soil concentrations of SOC and lower concentrations of dissolved organic-C and active labile organiccarbon, indicating reduced mineralization and enhanced stocks of stable-C. Biochar application (4 and 8 t ha-1) led to lower soil Ca-SOC concentrations and greater soil Fe(Al)-SOC concentrations. Concentrations of Fe(Al)-SOC were greater under the application of N-enriched biochar at 4 t ha-1, indicating the bonding capacity of ironaluminum oxide and organic carbon provided by biochar improved levels of SOC fixation. The composition of soil aggregates under each treatment was mainly micro-aggregates (<0.25 mm). The greater soil content of macro-aggregates (>0.25 mm) increased under amendment with 4 t of biochar ha -1 and the greater SOC content led to greater soil aggregate stability. Levels of C pool activity, C pool index, and CPMI reduced following application of the biochar, while C pool activity index increased slightly, indicating an increase in soil quality. These results indicate that the application of N-enriched biochar during rice cultivation may lead to reductions in SOC mineralization and C emissions and increases in soil C sink capacity, due to greater SOC pool stability, thus improving the sustainability of paddy rice production.
Asunto(s)
Gases de Efecto Invernadero , Oryza , Suelo , Carbono/análisis , Nitrógeno/análisis , Carbón Orgánico/farmacología , Agua , Hierro , Óxido de Aluminio , Agricultura/métodosRESUMEN
The lateral organ boundary domain (LBD) gene is a plant-specific transcription factor that plays a crucial role in plant growth and development, including the development of lateral vegetative organs such as leaf and root development, as well as floral organs such as sepal, petal, and pollen development. Passion fruit is a tropical fruit with important agricultural, economic and ornamental value. However, there is no systematic research report available on the LBD gene family of passion fruit. In this study, a genome-wide analysis of passion fruit LBD genes identified 33 PeLBDs that were unevenly distributed across nine chromosomes. According to phylogenetic and gene structure analysis, PeLBDs were divided into two categories: Class I (27) and Class II (6). Homologous protein modeling results showed that the gene members of the two subfamilies were structurally and functionally similar. Cis-acting element and target gene prediction analysis suggested that PeLBDs might participate in various biological processes by regulating diverse target genes involved in growth and development, metabolism, hormones and stress response. Collinearity analysis indicated that the expansion of the PeLBD gene family likely took place mainly by segmental duplication, and some duplicated gene pairs such as PeLBD13/15 might show functional redundancy, while most duplicated gene pairs such as PeLBD8/12 showed different expression profiles indicating their functional diversification. After filtering low expressed genes, all Class Id PeLBDs were more highly expressed during pollen development. At the same, all Class Ic and many other PeLBDs were relatively highly expressed during ovule development, similar with their homologous LBD genes in Arabidopsis, indicating their potential regulatory roles in reproductive tissue development in passion fruit. PeLBDs that were highly expressed in floral tissues were also expressed at a higher level in tendrils with some differences, indicating the close relationships of tendrils to floral tissues. Some genes such as PeLBD23/25 might be simultaneously related to floral development and leaf early formation in passion fruit, while other PeLBDs showed a strong tissue-specific expression. For example, PeLBD17/27/29 were specifically expressed in floral tissues, while PeLBD11 were only highly expressed in fruit, suggesting their specific function in the development of certain tissues. A qRT-PCR was conducted to verify the expression levels of six PeLBDs in different tissues. Our analysis provides a basis for the functional analysis of LBD genes and new insights into their regulatory roles in floral and vegetative tissue development.