Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 46-56, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095180

RESUMEN

Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Modelos Químicos , Termodinámica , Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/química , Material Particulado/análisis , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
2.
Artículo en Inglés | MEDLINE | ID: mdl-31057203

RESUMEN

Shape analysis is an important method used in neuroimaging research community due to its potential to precisely locate morphological changes between healthy and pathological structures. A popular shape analysis framework in the neuroimaging community is based on the encoding surface locations as spherical harmonics for a representation called SPHARM-PDM.1 The SPHARM-PDM pipeline takes a set of brain segmentation of a single brain structure (for example, hippocampus) as input and converts them into a corresponding spherical harmonic description (SPHARM), which is then sampled into triangulated surface (SPHARM-PDM). At present, the SPHARM-PDM pipeline utilizes an area-preserving optimization of the spherical mapping based on an initial heat-equation based mapping of the surface mesh to the unit sphere. In the case of objects with complex shape, this initial spherical mapping suffers from a high degree of mapping distortion that cannot always be corrected by the following optimization procedure. Here we proposed the use of an alternative initialization based on a conformal flattening.2 This method adopts a bijective angle preserving conformal flattening scheme to replace the heat equation mapping scheme as initialization for use in the SPHARM-PDM pipeline. After quantitative measures of shape calculated from various complex structures, we concluded that in most cases, the new pipeline produced dramatically better results than the old pipeline. The main contribution of this paper is a command line tool based on the Slicer Execution Model, which merges the conformal flattening into the SPHARM-PDM pipeline for use in the SALT shape analysis toolbox.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...