Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gene ; 917: 148467, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38615983

RESUMEN

Rhodiola crenulata, a plant of great medicinal value found in cold high-altitude regions, has been excessively exploited due to the difficulty in cultivation. Understanding Rhodiola crenulata's adaptation mechanisms to cold environment can provide a theoretical basis for artificial breeding. Glutathione peroxidases (GPXs), critical enzymes found in plants, play essential roles in antioxidant defense through the ascorbate-glutathione cycle. However, it is unknown whether GPX5 contributes to Rhodiola crenulata's cold tolerance. In this study, we investigated the role of GPX5 in Rhodiola crenulata's cold tolerance mechanisms. By overexpressing Rhodiola crenulata GPX5 (RcGPX5) in yeast and Arabidopsis thaliana, we observed down-regulation of Arabidopsis thaliana GPX5 (AtGPX5) and increased cold tolerance in both organisms. Furthermore, the levels of antioxidants and enzyme activities in the ascorbate-glutathione cycle were elevated, and cold-responsive genes such as AtCBFs and AtCORs were induced. Additionally, RcGPX5 overexpressing lines showed insensitivity to exogenous abscisic acid (ABA), suggesting a negative regulation of the ABA pathway by RcGPX5. RcGPX5 also promoted the expression of several thioredoxin genes in Arabidopsis and interacted with two endogenous genes of Rhodiola crenulata, RcTrx2-3 and RcTrxo1, located in mitochondria and chloroplasts. These findings suggest a significantly different model in Rhodiola crenulata compared to Arabidopsis thaliana, highlighting a complex network involving the function of RcGPX5. Moreover, overexpressing RcGPX5 in Rhodiola crenulata hairy roots positively influenced the salidroside synthesis pathway, enhancing its pharmaceutical value for doxorubicin-induced cardiotoxicity. These results suggested that RcGPX5 might be a key component for Rhodiola crenulata to adapt to cold stress and overexpressing RcGPX5 could enhance the pharmaceutical value of the hairy roots.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Glutatión Peroxidasa , Raíces de Plantas , Rhodiola , Rhodiola/genética , Rhodiola/metabolismo , Arabidopsis/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frío , Antioxidantes/metabolismo , Ácido Abscísico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica/genética
2.
Ann Nucl Med ; 38(4): 288-295, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38252229

RESUMEN

OBJECTIVE: Most reported research has primarily investigated wild-type transthyretin cardiac amyloidosis (ATTRwt-CA). However, the application of bone scintigraphy for hereditary transthyretin cardiac amyloidosis (ATTRv-CA) has not been systematically investigated. Therefore, in this study, we aimed to evaluate the diagnostic value of 99mTc-PYP scintigraphy in ATTRv-CA. METHODS: Fifty-four patients were enrolled in a highly suspected cardiac amyloidosis cohort. Transthyretin (TTR) gene characteristics were summarized in the ATTRv-CA group. In 99mTc-PYP scintigraphy, the diagnostic efficiency of the visual score (VGS) and heart-to-contralateral chest (H/CL) ratio were evaluated. Furthermore, the interobserver consistency among the diagnosticians was investigated. RESULTS: Twenty-eight patients were diagnosed with ATTRv-CA with eight genotypes. The Ala97Ser genotype accounts for 46% (n = 13) with a mean age of disease onset, definite diagnosis, and interval of 61.6 ± 1.9, 66.5 ± 1.3, and 4.0 (3.0, 6.2) years, respectively. Their VGS is Grade 3, and their H/CL ratio is higher than that of the non-Ala97Ser group, but no statistical significance exists (mean H/CL: 1.95 ± 0.06 vs. 1.87 ± 0.02, p = 0.844). Additionally, ATTRv-CA patients showed VGS ≥ 2, and mean H/CL ratio of 2.09 ± 0.06. The sensitivity and specificity of VGS were 100% and 65%, respectively. And the interobserver consistency analysis of VGS showed the intraclass correlation coefficient is 0.522. The best cutoff value of H/CL ratio was 1.51 (AUC = 0.996), and the diagnostic consistency of H/CL (bias: 0.018) was high. CONCLUSIONS: Ala97Ser is the most common genotype in ATTRv-CA in our cohort, with characteristics of later onset and rapid progression, but delayed diagnosis and extensive 99mTc-PYP uptake. Overall, ATTRv-CA patients showed moderate-to-extensive myocardial 99mTc-PYP uptake. Additionally, VGS carries subjectivity, low specialty and interobserver consistency. But H/CL exhibit high diagnostic efficacy and interobserver consistency. The H/CL ratio is more useful than VGS.


Asunto(s)
Neuropatías Amiloides Familiares , Cardiomiopatías , Humanos , Pirofosfato de Tecnecio Tc 99m , Prealbúmina/genética , Corazón , Neuropatías Amiloides Familiares/diagnóstico por imagen , Neuropatías Amiloides Familiares/genética , Cintigrafía , Cardiomiopatías/diagnóstico por imagen
3.
Arch Toxicol ; 98(3): 709-734, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182913

RESUMEN

With the rapid development of new generations of antitumor therapies, the average survival time of cancer patients is expected to be continuously prolonged. However, these therapies often lead to cardiotoxicity, resulting in a growing number of tumor survivors with cardiovascular disease. Therefore, a new interdisciplinary subspecialty called "cardio-oncology" has emerged, aiming to detect and treat cardiovascular diseases associated with tumors and antitumor therapies. Recent studies have highlighted the role of ferroptosis in both cardiovascular and neoplastic diseases. The balance between intracellular oxidative stress and antioxidant defense is crucial in regulating ferroptosis. Tumor cells can evade ferroptosis by upregulating multiple antioxidant defense pathways, while many antitumor therapies rely on downregulating antioxidant defense and promoting ferroptosis in cancer cells. Unfortunately, these ferroptosis-inducing antitumor therapies often lack tissue specificity and can also cause injury to the heart, resulting in ferroptosis-induced cardiotoxicity. A range of cardioprotective agents exert cardioprotective effects by inhibiting ferroptosis. However, these cardioprotective agents might diminish the efficacy of antitumor treatment due to their antiferroptotic effects. Most current research on ferroptosis only focuses on either tumor treatment or heart protection but rarely considers both in concert. Therefore, further research is needed to study how to protect the heart during antitumor therapies by regulating ferroptosis. In this review, we summarized the role of ferroptosis in the treatment of neoplastic diseases and cardiovascular diseases and also attempted to propose further research directions for ferroptosis in the field of cardio-oncology.


Asunto(s)
Enfermedades Cardiovasculares , Ferroptosis , Humanos , Antioxidantes , Cardiooncología , Cardiotónicos , Cardiotoxicidad , Enfermedades Cardiovasculares/inducido químicamente
4.
Artículo en Inglés | MEDLINE | ID: mdl-38056777

RESUMEN

PURPOSE: Hope is important in serious illnesses, as it has been linked to patient quality of life. We aimed to determine factors associated with lower hope scores among patients with central nervous system disease or bone metastases. METHODS AND MATERIALS: The Adult Dispositional Hope Scale (AHS) is a 12-item questionnaire that measures hope through 2 qualities: agency (goal-directed energy) and pathways (plan to meet goals). Total scores range from 8 to 64, with higher scores reflecting higher agency and pathways thinking. We prospectively collected scores from patients seen in 2 radiation oncology clinics at our institution from October 2022 to April 2023. The method of least squares to fit general linear models and Pearson's correlation coefficients was used to determine relationships between AHS score and socioeconomic and disease factors. RESULTS: Of the 197 patients who responded, the median age was 60.5 years (range, 16.9-92.5 years) and most patients were male (60.9%), were White (59.4%), and had malignant disease (59.4%). The median overall AHS score was 54 (range, 8-64), and median pathway and agency thinking scores were 27 (range, 4-32) and 27 (range, 4-32), respectively. Patients who needed an interpreter compared with those who did not had significantly lower overall AHS scores (mean score, 45.4 vs 51.2, respectively; P = .0493) and pathway thinking scores (mean score, 21.5 vs 25.7, respectively; P = .0085), and patients with poorer performance status had significantly worse overall AHS scores (Pearson's correlation coefficient = -0.2703, P = .0003). CONCLUSIONS: Patients with central nervous system disease or bone metastases requiring the use of an interpreter had lower AHS scores, highlighting the possible association of language barriers to hope. Addressing patient language barriers and further studies on the possible association of language barriers to hope may improve hope, quality of life, and outcomes among these patients.

5.
Cancer Imaging ; 23(1): 81, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667341

RESUMEN

BACKGROUND: The prostate-specific antigen (PSA) has been widely used in screening and early diagnosis of prostate cancer (PCa). However, in the PSA grey zone of 4-10 ng/ml, the sensitivity and specificity for diagnosing PCa are limited, resulting in considerable number of unnecessary and invasive prostate biopsies, which may lead to potential overdiagnosis and overtreatment. We aimed to predict clinically significant PCa (CSPCa) by combining the maximal standardized uptake value (SUVmax) based on 68Ga­PSMA PET/CT and clinical indicators in men with gray zone PSA levels. METHODS: 81 patients with suspected PCa based on increased serum total PSA (TPSA) levels of 4 - 10 ng/mL who underwent transrectal ultrasound/magnetic resonance imaging (MRI)/PET fusion-guided biopsy were enrolled. Among them, patients confirmed by histopathology were divided into the CSPCa group and the non-CSPCa group, and data on PSA concentration, prostate volume (PV), PSA density (PSAD), free PSA (FPSA)/TPSA, Prostate Imaging-Reporting and Data System version 2.1 (PI-RADS v2.1) score, 68Ga-PSMA PET/CT imaging evaluation results and SUVmax were compared. Multivariate logistic regression analysis was performed to identify the independent predictors for CSPCa, thereby establishing a predictive model based on SUVmax that was evaluated by analyzing the receiver operating characteristic (ROC) curve and decision curve analysis. RESULTS: Compared to non-CSPCa, CSPCa patients had smaller PVs (median, 31.40 mL), lower FPSA/TPSA (median, 0.12), larger PSADs (median, 0.21 ng/mL2) and higher PI-RADS scores (P < 0.05). The prediction model comprising 68Ga-PSMA PET/CT maximal standardized uptake value, PV and FPSA/TPSA had the highest AUC of 0.927 compared with that of other predictors alone (AUCs of 0.585 for PSA, 0.652 for mpMRI and 0.850 for 68Ga-PSMA PET/CT). The diagnostic sensitivity and specificity of the prediction model were 86.21% and 86.54%, respectively. CONCLUSION: Given the low diagnostic accuracy of regular PSA tests, a new prediction model based on the 68Ga-PSMA PET/CT SUVmax, PV and FPSA/TPSA was developed and validated, and this model could provide a more satisfactory predictive accuracy for CSPCa. This study provides a noninvasive prediction model with high accuracy for the diagnosis of CSPCa in the PSA gray zone, thus may be better avoiding unnecessary biopsy procedures.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética , Biopsia Guiada por Imagen
6.
Front Oncol ; 13: 1072510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816956

RESUMEN

Theranostic approaches with positron emission tomography/computed tomography (PET/CT) or PET/magnetic resonance imaging (PET/MRI) molecular imaging probes are being implemented clinically in prostate cancer (PCa) diagnosis and imaging-guided precision surgery. This review article provides a comprehensive summary of the rapidly expanding list of molecular imaging probes in this field, including their applications in early diagnosis of primary prostate lesions; detection of lymph node, skeletal and visceral metastases in biochemical relapsed patients; and intraoperative guidance for tumor margin detection and nerve preservation. Although each imaging probe shows preferred efficacy in some applications and limitations in others, the exploration and research efforts in this field will eventually lead to improved precision theranostics of PCa.

7.
Front Med (Lausanne) ; 8: 673876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222284

RESUMEN

Purpose: We investigated whether a fluorine-18-fluorodeoxy glucose positron emission tomography/computed tomography (18F-FDG PET/CT)-based radiomics model (RM) could predict the pathological mediastinal lymph node staging (pN staging) in patients with non-small cell lung cancer (NSCLC) undergoing surgery. Methods: A total of 716 patients with a clinicopathological diagnosis of NSCLC were included in this retrospective study. The prediction model was developed in a training cohort that consisted of 501 patients. Radiomics features were extracted from the 18F-FDG PET/CT of the primary tumor. Support vector machine and extremely randomized trees were used to build the RM. Internal validation was assessed. An independent testing cohort contained the remaining 215 patients. The performances of the RM and clinical node staging (cN staging) in predicting pN staging (pN0 vs. pN1 and N2) were compared for each cohort. The area under the curve (AUC) of the receiver operating characteristic curve was applied to assess the model's performance. Results: The AUC of the RM [0.81 (95% CI, 0.771-0.848); sensitivity: 0.794; specificity: 0.704] for the predictive performance of pN1 and N2 was significantly better than that of cN in the training cohort [0.685 (95% CI, 0.644-0.728); sensitivity: 0.804; specificity: 0.568], (P-value = 8.29e-07, as assessed by the Delong test). In the testing cohort, the AUC of the RM [0.766 (95% CI, 0.702-0.830); sensitivity: 0.688; specificity: 0.704] was also significantly higher than that of cN [0.685 (95% CI, 0.619-0.747); sensitivity: 0.799; specificity: 0.568], (P = 0.0371, Delong test). Conclusions: The RM based on 18F-FDG PET/CT has a potential for the pN staging in patients with NSCLC, suggesting that therapeutic planning could be tailored according to the predictions.

8.
Eur Spine J ; 28(12): 3035-3043, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31446493

RESUMEN

OBJECTIVES: To automatically measure the Cobb angle and diagnose scoliosis on chest X-rays, a computer-aided method was proposed and the reliability and accuracy were evaluated. METHODS: Two Mask R-CNN models as the core of a computer-aided method were used to separately detect and segment the spine and all vertebral bodies on chest X-rays, and the Cobb angle of the spinal curve was measured from the output of the Mask R-CNN models. To evaluate the reliability and accuracy of the computer-aided method, the Cobb angles on 248 chest X-rays from lung cancer screening were measured automatically using a computer-aided method, and two experienced radiologists used a manual method to separately measure Cobb angles on the aforementioned chest X-rays. RESULTS: For manual measurement of the Cobb angle on chest X-rays, the intraclass correlation coefficients (ICC) of intra- and inter-observer reliability analysis was 0.941 and 0.887, respectively, and the mean absolute differences were < 3.5°. The ICC between the computer-aided and manual methods for Cobb angle measurement was 0.854, and the mean absolute difference was 3.32°. These results indicated that the computer-aided method had good reliability for Cobb angle measurement on chest X-rays. Using the mean value of Cobb angles in manual measurements > 10° as a reference standard for scoliosis, the computer-aided method achieved a high level of sensitivity (89.59%) and a relatively low level of specificity (70.37%) for diagnosing scoliosis on chest X-rays. CONCLUSION: The computer-aided method has potential for automatic Cobb angle measurement and scoliosis diagnosis on chest X-rays. These slides can be retrieved under Electronic Supplementary Material.


Asunto(s)
Redes Neurales de la Computación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica/métodos , Escoliosis , Columna Vertebral , Humanos , Reproducibilidad de los Resultados , Escoliosis/diagnóstico por imagen , Escoliosis/patología , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/patología
9.
Front Cell Neurosci ; 13: 506, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920543

RESUMEN

Neonatal hypoxic-ischemic (HI) encephalopathy is a severe disease for which there is currently no curative treatment. Recent evidence suggests that high-mobility group box 1 (HMGB1) protein can promote neuroinflammation after stroke in adult rodents, but its role in perinatal hypoxic-ischemic brain damage (HIBD) remains largely uninvestigated. In the present work, the potential role of HMGB1 in the pathogenesis of HIBD was explored. A HIBD model was established in postpartum day 7 rat pups. HMGB1 expression, the cellular distribution of HMGB1, and microglial activation were all evaluated. Glycyrrhizin (GL), an inhibitor of HMGB1, was used to investigate whether the inhibition of HMGB1 modulated microglial M1/M2 polarization or attenuated brain damage after HI. HAPI microglial cells and primary neurons were cultured in vitro and an oxygen-glucose deprivation model was established to evaluate the effects of different microglial-conditioned media on neurons using GL and recombinant HMGB1. Results showed that the expression of HMGB1 was increased in both the ipsilateral cortex and peripheral blood 72 h after HI. Immunofluorescence analyses showed that HMGB1 in the cortex was primarily expressed in neurons. This increase in cortical HMGB1 expression 72 h after HI was characterized by increased co-expression with microglia, rather than neurons or astrocytes. The expression of both M1 and M2 microglia was upregulated 72 h after HI. The administration of GL significantly suppressed M1 microglial polarization and promoted M2 microglial polarization. Meanwhile, GL pretreatment significantly alleviated brain edema and cerebral infarction. In vitro experimentation showed that HMGB1-induced M1-conditioned media aggravated neuronal damage, but this effect was neutralized by GL. These findings suggest that HMGB1 may result in an imbalance of M1/M2 microglial polarization in the cortex and thus cause neuronal injury. Pharmacological blockade of HMGB1 signaling may attenuate this imbalanced polarization of microglia and thus could be used as a therapeutic strategy against brain injury in HIBD.

10.
Onco Targets Ther ; 7: 2013-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25378936

RESUMEN

Glioblastoma is one of the most common malignant tumors in the nervous system in both adult and pediatric patients. Studies suggest that abnormal activation of receptor tyrosine kinases contributes to pathological development of glioblastoma. However, current therapies targeting tyrosine kinase receptors have poor therapeutic outcomes. Here, we examined anticancer effects of ponatinib, a multi-targeted tyrosine kinase inhibitor, on glioblastoma cells both in the U87MG cell line and in the mouse xenograft model. We showed that ponatinib treatment reduced cell viability and induced cell apoptosis in a dose-dependent manner in U87MG cells. In addition, ponatinib suppressed migration and invasion of U87MG cells effectively. Furthermore, ponatinib-treated tumors showed an obvious reduction of tumor volume and an increase of apoptosis as compared with vehicle-treated tumors in the mouse xenograft model. These findings support a potential application of ponatinib as a chemotherapeutic option against glioblastoma cells.

11.
J Membr Biol ; 247(7): 601-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24894719

RESUMEN

Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Potenciales de la Membrana , Animales , Transporte Iónico , Microelectrodos , Ratas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
12.
ACS Appl Mater Interfaces ; 6(9): 6717-23, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24707798

RESUMEN

In this study, tadpole-like single chain polymer nanoparticles (TSCPNs) were efficiently synthesized by intramolecularly cross-linking P4VP block of commercial block polymer of PMMA2250-b-P4VP286 in N,N-dimethylformamide using propargyl bromide as cross-linking agent. The intramolecular cross-linking reaction led to the production of TSCPNs with a linear tail and a cross-linked head. The as-prepared TSCPNs were then applied as emulsifier to stabilize water in chlorobenzene emulsion, and an extremely stabilized water in oil (W/O) emulsion was generated at a low TSCPNs concentration. The TSCPNs concentration was as low as 0.0075 wt % versus total weight of water and chlorobenzene for emulsion formation. The emulsifying performance of TSCPNs was better than that of low molecular surfactant, such as Span-80. The generated W/O emulsion provided an ideal medium for the reduction of oil-soluble p-nitroanisole by water-soluble sulfide to p-anisidine, an effective contact problem between the two reactants with different solubility was well solved through interfacial reaction.

13.
Bioelectromagnetics ; 34(4): 253-63, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23322376

RESUMEN

In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity.


Asunto(s)
Membrana Celular/metabolismo , Electricidad/efectos adversos , Electroporación , Desnaturalización Proteica , Animales , Anuros , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Fibras Musculares Esqueléticas/citología , Factores de Tiempo
14.
J Bioenerg Biomembr ; 44(3): 385-95, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22454211

RESUMEN

Blood vessel dilation starts from activation of the Na/K pumps and inward rectifier K channels in the vessel smooth muscle cells, which hyperpolarizes the cell membrane potential and closes the Ca channels. As a result, the intracellular Ca concentration reduces, and the smooth muscle cells relax and the blood vessel dilates. Activation of the Na/K pumps and the membrane potential hyperpolarization plays a critical role in blood vessel functions. Previously, we developed a new technique, synchronization modulation, to control the pump functions by electrically entraining the pump molecules. We have applied the synchronization modulation electric field noninvasively to various intact cells and demonstrated the field-induced membrane potential hyperpolarization. We further applied the electric field to blood vessels and investigated the field induced functional changes of the vessels. In this paper, we report the results in a study of the membrane potential change in the smooth muscle cells of mesenteric blood vessels in response to the oscillating electric field. We found that the synchronization modulation electric field can effectively hyperpolarize the muscle membrane potential quickly in seconds under physiological conditions.


Asunto(s)
Arteriolas/fisiología , Miocitos del Músculo Liso/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Arteriolas/enzimología , Arteriolas/metabolismo , Polaridad Celular/fisiología , Estimulación Eléctrica/métodos , Transporte Iónico/fisiología , Masculino , Potenciales de la Membrana/fisiología , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/metabolismo , Ratas , Ratas Sprague-Dawley
15.
J Membr Biol ; 245(2): 97-105, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22359065

RESUMEN

Our previous studies have shown that a specially designed, so-called synchronization modulation electric field can entrain active transporter Na/K pumps in the cell membrane. This approach was previously developed in a study of single cells using a voltage clamp to monitor the pump currents. We are now expanding our study from isolated single cells to aggregated cells in a 3-dimensional cell matrix, through the use of a tissue slice from the rat heart. The slice is about 150 µm in thickness, meaning the slices contain many cell layers, resulting in a simplified 3-dimensional system. A fluorescent probe was used to identify the membrane potential and the ionic concentration gradients across the cell membrane. In spite of intrinsic cell-to-cell interactions and the difficulty in stimulating cell aggregation in the tissue slice, the oscillating electric field increased the intracellular fluorescent intensity, indicating elevation of the cell ionic concentration and hyperpolarization of the cell membrane. Blockage of these changes by ouabain confirmed that the results are directly related to Na/K pumps. These results along with the backward modulation indicate that the synchronization modulation electric field can influence the Na/K pumps in tissue cells of a 3-dimensional matrix and therefore hyperpolarize the cell membrane.


Asunto(s)
Membrana Celular/fisiología , Miocitos Cardíacos/fisiología , Animales , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Estimulación Eléctrica/métodos , Colorantes Fluorescentes/metabolismo , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Iones/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ouabaína/farmacología , Ratas , Ratas Sprague-Dawley , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
16.
Nature ; 453(7197): 921-4, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18488016

RESUMEN

Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms. HD is caused by the expansion of cytosine-adenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene. Mutant HTT with expanded polyglutamine (polyQ) is widely expressed in the brain and peripheral tissues, but causes selective neurodegeneration that is most prominent in the striatum and cortex of the brain. Although rodent models of HD have been developed, these models do not satisfactorily parallel the brain changes and behavioural features observed in HD patients. Because of the close physiological, neurological and genetic similarities between humans and higher primates, monkeys can serve as very useful models for understanding human physiology and diseases. Here we report our progress in developing a transgenic model of HD in a rhesus macaque that expresses polyglutamine-expanded HTT. Hallmark features of HD, including nuclear inclusions and neuropil aggregates, were observed in the brains of the HD transgenic monkeys. Additionally, the transgenic monkeys showed important clinical features of HD, including dystonia and chorea. A transgenic HD monkey model may open the way to understanding the underlying biology of HD better, and to the development of potential therapies. Moreover, our data suggest that it will be feasible to generate valuable non-human primate models of HD and possibly other human genetic diseases.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Macaca mulatta/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Corea/genética , Corea/fisiopatología , Distonía/genética , Distonía/fisiopatología , Exones/genética , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/genética , Péptidos/metabolismo , Embarazo , Análisis de Supervivencia
17.
Nat Neurosci ; 10(12): 1519-28, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17994014

RESUMEN

Expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) causes the neurodegenerative disease spinocerebellar ataxia 17 (SCA17). It remains unclear how the polyQ tract regulates normal protein function and induces selective neuropathology in SCA17. We generated transgenic mice expressing polyQ-expanded TBP. These mice showed weight loss, progressive neurological symptoms and neurodegeneration before early death. Expanded polyQ tracts reduced TBP dimerization but enhanced the interaction of TBP with the general transcription factor IIB (TFIIB). In SCA17 transgenic mice, the small heat shock protein HSPB1, a potent neuroprotective factor, was downregulated, and TFIIB occupancy of the Hspb1 promoter was decreased. Overexpression of HSPB1 or TFIIB alleviated mutant TBP-induced neuritic defects. These findings implicate the polyQ domain of TBP in transcriptional regulation and provide insight into the molecular pathogenesis of SCA17.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ácido Poliglutámico/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIB/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/citología , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Regulación de la Expresión Génica/genética , Proteínas de Choque Térmico/genética , Humanos , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Chaperonas Moleculares , Mutación/fisiología , Proteínas de Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Neuronas/ultraestructura , Ácido Poliglutámico/genética , Ratas , Proteína de Unión a TATA-Box/genética , Transfección
18.
J Neurosci ; 26(22): 6019-30, 2006 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-16738245

RESUMEN

Mutant huntingtin can affect vesicular and receptor trafficking via its abnormal protein interactions, suggesting that impairment of intracellular trafficking may contribute to Huntington's disease. There is growing evidence that huntingtin-associated protein-1 (HAP1) also interacts with microtubule-dependent transporters and is involved in intracellular trafficking. However, it remains unclear how the trafficking of HAP1 is regulated and contributes to neuronal function. Here we report that phosphorylation of HAP1 decreases its association with microtubule-dependent transport proteins dynactin p150 and kinesin light chain and reduces its localization in neurite tips. Suppressing HAP1 expression by RNA interference reduces neurite outgrowth and the level of tropomyosin-related kinase A receptor tyrosine kinase (TrkA), a nerve growth factor receptor whose internalization and trafficking are required for neurite outgrowth. HAP1 maintains the normal level of membrane TrkA by preventing the degradation of internalized TrkA. Mutant huntingtin also reduces the association of HAP1 with dynactin p150 and kinesin light chain and thereby decreases the intracellular level of TrkA. These findings suggest that HAP1 trafficking is critical for the stability of TrkA and neurite function, both of which can be attenuated by mutant huntingtin.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuritas/fisiología , Neuronas/fisiología , Receptor trkA/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Genes Reporteros , Enfermedad de Huntington , Hipotálamo , Microscopía Confocal , Neuritas/ultraestructura , Neuronas/citología , Células PC12 , Feocromocitoma , ARN Interferente Pequeño/genética , Ratas , Ganglio Cervical Superior/fisiología
19.
Nat Med ; 12(5): 526-33, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16604089

RESUMEN

The hypothalamus responds to circulating leptin and insulin in the control of food intake and body weight. A number of neurotransmitters in the hypothalamus, including gamma-aminobutyric acid (GABA), also have key roles in feeding. Huntingtin-associated protein 1 (Hap1) is expressed more abundantly in the hypothalamus than in other brain regions, and lack of Hap1 in mice leads to early postnatal death. Hap1 is also involved in intracellular trafficking of the GABA(A) receptor. Here, we report that fasting upregulates the expression of Hap1 in the rodent hypothalamus, whereas intracerebroventricular administration of insulin downregulates Hap1 by increasing its degradation through ubiquitination. Decreasing the expression of mouse hypothalamic Hap1 by siRNA reduces the level and activity of hypothalamic GABA(A) receptors and causes a decrease in food intake and body weight. These findings provide evidence linking hypothalamic Hap1 to GABA in the stimulation of feeding and suggest that this mechanism is involved in the feeding-inhibitory actions of insulin in the brain.


Asunto(s)
Ingestión de Alimentos , Conducta Alimentaria/fisiología , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de GABA-A/metabolismo , Animales , Peso Corporal , Electrofisiología , Ayuno , Humanos , Hipotálamo/citología , Insulina/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Ubiquitina/metabolismo
20.
J Cell Biol ; 171(6): 1001-12, 2005 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-16365166

RESUMEN

Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron-glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant htt may critically contribute to neuronal excitotoxicity in HD.


Asunto(s)
Neuroglía/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Adulto , Anciano , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Transportador 2 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA