Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(3): e0265432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35312728

RESUMEN

The genetic disease cystic fibrosis (CF) results when mutations in the gene for the anion channel CFTR reduce CFTR's activity below a critical level. CFTR activity = N·PO·Î³ (number of channels x open probability x channel conductance). Small molecules are now available that partially restore CFTR function with dramatic improvements in health of CF subjects. Continued evaluation of these and other compounds in development will be aided by accurate assessments of CFTR function. However, measuring CFTR activity in vivo is challenging and estimates vary widely. The most accurate known measure of CFTR activity in vivo is the 'ß/M' ratio of sweat rates, which is produced by stimulation with a ß-adrenergic agonist cocktail referenced to the same individual's methacholine-stimulated sweat rate. The most meaningful metric of CFTR activity is to express it as a percent of normal function, so it is critical to establish ß/M carefully in a population of healthy control subjects. Here, we analyze ß/M from a sample of 50 healthy adults in which sweat rates to cholinergic and ß-adrenergic agonists were measured repeatedly (3 times) in multiple, (~50) identified sweat glands from each individual (giving ~20,000 measurements). The results show an approximately 7-fold range, 26-187% of the WT average set to 100%. These provide a benchmark against which other measures of CFTR activity can be compared. Factors contributing to ß/M variation in healthy controls are discussed.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Adulto , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Sudor , Glándulas Sudoríparas , Sudoración
2.
Sci Rep ; 8(1): 16233, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389955

RESUMEN

To determine if ivacaftor (Kalydeco) influences non-CF human CFTR function in vivo, we measured CFTR-dependent (C-sweat) and CFTR-independent (M-sweat) rates from multiple identified sweat glands in 8 non-CF adults. The two types of sweating were stimulated sequentially with intradermal injections of appropriate reagents; each gland served as its own control via alternating off-on drug tests on both arms, given at weekly intervals with 3 off and 3 on tests per subject. We compared drug effects on C-sweating stimulated by either high or low concentrations of ß-adrenergic cocktail, and on methacholine-stimulated M-sweating. For each subject we measured ~700 sweat volumes from ~75 glands per arm (maximum 12 readings per gland), and sweat volumes were log-transformed for statistical analysis. T-tests derived from linear mixed models (LMMs) were more conservative than the familiar paired sample t-tests, and show that ivacaftor significantly increased C-sweating stimulated by both levels of agonist, with a larger effect in the low cocktail condition; ivacaftor did not increase M-sweat. Concurrent sweat chloride tests detected no effect of ivacaftor. We conclude that ivacaftor in vivo increases the open channel probability (PO) of WT CFTR, provided it is not already maximally stimulated.


Asunto(s)
Aminofenoles/administración & dosificación , Agonistas de los Canales de Cloruro/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Quinolonas/administración & dosificación , Glándulas Sudoríparas/efectos de los fármacos , Sudoración/efectos de los fármacos , Adulto , Cloruros/análisis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/agonistas , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Sudor/química , Glándulas Sudoríparas/metabolismo
3.
PLoS One ; 11(10): e0165254, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27768743

RESUMEN

Beta-adrenergically-stimulated sweat rates determined by evaporimetry or by sweat bubble imaging are useful for measuring CFTR function because they provide a near-linear readout across almost the full range of CFTR function. They differentiate cystic fibrosis (CF) subjects from CF carriers and carriers from controls. However, evaporimetry, unlike bubble imaging, appears to be unable to detect improved levels of CFTR function in G551D subjects taking the CFTR modulator ivacaftor. Here, we quantify the sensitivity of evaporimetry and bubble imaging methods for assessing low levels of CFTR-dependent sweat rates. To establish sensitivity, we did dose-ranging studies using intradermally injected [cAMP]i-elevating cocktails. We reduced isoproterenol/aminophylline levels while maintaining a high level of atropine to block muscarinic elevation of [Ca2+]i. We stimulated the same sets of glands for both assays and recorded responses for 20 min. In response to a 3-log dilution of the stimulating cocktail (0.1%), bubble responses were detected in 12/12 tests (100%), with 49% ± 3% of glands secreting to produce an aggregate volume of 598 nl across the 12, 20-min tests. This was ~5% of the response to full cocktail. Evaporimetry detected responses in 3/12 (25%) tests with an aggregate secretion volume of 175 nl. After stimulation with a still more dilute cocktail (0.03%), bubble imaging detected 15 ± 13% of glands secreting at a rate ~0.9% of the response to full cocktail, while zero responding was seen with evaporimetry. The bubble imaging method detected secretion down to aggregate rates of <0.2 nl/(cm2·min), or ~1/30th of the average basal transepithelial water loss (TEWL) in the test subject of 4 g/m2·hr or 6.7 nl/(cm2·min). The increased sensitivity of bubble imaging may be required to detect small but physiologically important increases in secretion rates produced by CFTR modulators.


Asunto(s)
Glándulas Sudoríparas/metabolismo , Adulto , Aminofilina/administración & dosificación , AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Femenino , Humanos , Isoproterenol/administración & dosificación , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...