Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell J ; 23(5): 593-597, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34837688

RESUMEN

Congenital disorders of glycosylation (CDG) are a heterogeneous group of systemic disorders characterized by defects in glycosylation of lipids and proteins. One of the rare subtypes of CDG is CDG-Ij (MIM # 608093), which is caused by pathogenic mutations in DPAGT1, a gene encoding UDP-N-acetylglucosaminedolichyl-phosphate N-acetylglucosaminephosphotransferase enzyme. This enzyme catalyzes the first step of oligosaccharide synthesis in glycoprotein biosynthesis pathway. Preimplantation genetic testing for monogenic disorders (PGT-M) is a diagnostic technique that can reveal the genetic profile of embryos before implantation phase of in vitro fertilization (IVF). Currently, this approach is performed using next generation sequencing (NGS) technology. Herein, with the help of whole-exome and Sanger sequencing, we detected a novel missense mutation (NM_001382, c.1217 A>G) in DPAGT1 gene in two families with consanguineous marriage. Using different online bioinformatics tools including MutationTaster, I-Mutant v2.0, T- Coffee, and CADD v1.0, this mutation was predicted pathogen. Finally, after performing PGT-M followed by successful pregnancy, a normal child was born in one of these families. In conclusion, we identified a novel pathogenic mutation in DPAGT1 in a family with multiple members affected by CDG, which extends the range of pathogenic variants associated with CDG and therefore facilitates early detection of the disease.

2.
Genet Med ; 23(7): 1246-1254, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33824500

RESUMEN

PURPOSE: To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder. METHODS: A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization. RESULTS: Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons. CONCLUSION: Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Linaje , Secuenciación del Exoma
3.
BMC Med Genet ; 21(1): 22, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32013889

RESUMEN

BACKGROUND: Methylmalonic acidemia (MMA), which is an autosomal recessive metabolic disorder, is caused by mutations in methylmalonyl-CoA mutase (MUT) gene. As a result, the conversion of methylmalonyl-CoA to succinyl-CoA is impaired in this disorder, leading to a wide range of clinical manifestations varying from no signs or symptoms to severe lethargy and metabolic crisis in newborn infants. Since identification of novel mutations in MUT gene can help discover the exact pathogenesis of MMA and also use these disease-causing mutations in prenatal diagnosis, this study was conducted to uncover the possible mutations in an Iranian couple with a deceased offspring clinically diagnosed as having organic acidemia. Moreover, to prevent the occurrence of the mutation in the next pregnancy, we took the advantage of pre-implantation genetic diagnosis (PGD), which resulted in a successful pregnancy. CASE PRESENTATION: The affected individual was a 15-month-old boy who passed away due to aspiration pneumonia. The child presented at the age of 3 months with lethargy, protracted vomiting, hypotonia, and decreased level of consciousness. To find the mutated gene, Next Generation Sequencing (NGS) was performed as carrier testing for the parents and the results revealed a novel (private) heterozygous missense mutation in MUT gene (c.1055A > G, p.Q352R). After performing PGD on three blastomeres, one was identified as being homozygous wild-type that was followed by successful pregnancy. CONCLUSIONS: Our study identified a novel, deleterious, heterozygous missense mutation in MUT gene in a couple and helps to consider the genetic counselling and prenatal diagnosis more seriously for this family with clinical phenotypes of organic acidemia.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Metilmalonil-CoA Mutasa/genética , Diagnóstico Preimplantación , Acilcoenzima A/genética , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Niño , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Recién Nacido , Irán , Masculino , Mutación Missense/genética , Fenotipo , Embarazo
4.
Eur J Med Genet ; 63(4): 103796, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31669356

RESUMEN

Hearing loss is the most prevalent sensorineural disorder which can be caused by genetic factors in more than half of the cases. GJB2 mutations with the frequency of 18.7% are the most common cause of autosomal recessive non-syndromic hearing loss (ARNSHL) in the Iranian population. The aim of the current study was to genotype 100 healthy individuals for eight microsatellite markers flanking the GJB2 gene, and to study markers on ten blastomeres using semi-nested PCR and Whole-genome amplification (WGA). All microsatellite markers within 1 Mb flanking the GJB2 gene were identified. From the identified markers, four with potentially high heterozygosity values were selected. The heterozygosity indices of four newly discovered markers and four previously reported markers were calculated. The markers and the GJB2 gene were also validated on single lymphocytes and blastomeres. Totally, 77 alleles were observed in eight loci. D13S046 showed the highest polymorphism and D13S141 showed the lowest. The observed heterozygosities of all markers, except D13S141, were higher than 50%. All single cells were genotyped successfully by the two techniques. Our findings indicate a high degree of polymorphism of the selected markers. Due to the high rate of successful amplification of markers in all ten blastomeres and the low level of allelic drop out (ADO), a combination of these eight microsatellite markers in conjunction with direct mutation detection is suggested for performing preimplantation genetic diagnosis (PGD) of hearing loss due to GJB2 mutations.


Asunto(s)
Conexinas/genética , Pérdida Auditiva/diagnóstico , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa/métodos , Diagnóstico Preimplantación/métodos , Secuenciación Completa del Genoma/métodos , Conexina 26 , Femenino , Pérdida Auditiva/genética , Humanos , Embarazo
5.
Front Neurol ; 10: 944, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551910

RESUMEN

Mitochondrial complex III deficiency nuclear type 2 is an autosomal-recessive disorder caused by mutations in TTC19 gene. TTC19 is involved in the preservation of mitochondrial complex III, which is responsible for transfer of electrons from reduced coenzyme Q to cytochrome C and thus, contributes to the formation of electrochemical potential and subsequent ATP generation. Mutations in TTC19 have been found to be associated with a wide range of neurological and psychological manifestations. Herein, we report on a 15-year-old boy born from first-degree cousin parents, who initially presented with psychiatric symptoms. He subsequently developed progressive ataxia, spastic paraparesis with involvement of caudate bodies and lentiform nuclei with cerebellar atrophy. Eventually, the patient developed gastrointestinal involvement. Using whole-exome sequencing (WES), we identified a novel homozygous frameshift mutation in the TTC19 gene in the patient (NM_017775.3, c.581delG: p.Arg194Asnfs*16). Advanced genetic sequencing technologies developed in recent years have not only facilitated identification of novel disease genes, but also allowed revelations about novel phenotypes associated with mutations in the genes already linked with other clinical features. Our findings expanded the clinical features of TTC19 mutation to potentially include gastrointestinal involvement. Further functional studies are needed to elucidate the underlying pathophysiological mechanisms.

7.
Am J Hum Genet ; 104(4): 767-773, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929741

RESUMEN

The diagnostic gap for rare neurodegenerative diseases is still considerable, despite continuous advances in gene identification. Many novel Mendelian genes have only been identified in a few families worldwide. Here we report the identification of an autosomal-dominant gene for hereditary spastic paraplegia (HSP) in 10 families that are of diverse geographic origin and whose affected members all carry unique truncating changes in a circumscript region of UBAP1 (ubiquitin-associated protein 1). HSP is a neurodegenerative disease characterized by progressive lower-limb spasticity and weakness, as well as frequent bladder dysfunction. At least 40% of affected persons are currently undiagnosed after exome sequencing. We identified pathological truncating variants in UBAP1 in affected persons from Iran, USA, Germany, Canada, Spain, and Bulgarian Roma. The genetic support ranges from linkage in the largest family (LOD = 8.3) to three confirmed de novo mutations. We show that mRNA in the fibroblasts of affected individuals escapes nonsense-mediated decay and thus leads to the expression of truncated proteins; in addition, concentrations of the full-length protein are reduced in comparison to those in controls. This suggests either a dominant-negative effect or haploinsufficiency. UBAP1 links endosomal trafficking to the ubiquitination machinery pathways that have been previously implicated in HSPs, and UBAP1 provides a bridge toward a more unified pathophysiology.


Asunto(s)
Proteínas Portadoras/genética , Mutación , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Bases de Datos Factuales , Modelos Animales de Enfermedad , Endosomas/metabolismo , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Genes Dominantes , Ligamiento Genético , Predisposición Genética a la Enfermedad , Genómica , Células HEK293 , Haploinsuficiencia , Humanos , Masculino , Persona de Mediana Edad , Linaje , Isoformas de Proteínas , Adulto Joven , Pez Cebra
8.
BMC Med Genet ; 20(1): 13, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642275

RESUMEN

BACKGROUND: Muscular dystrophies are a clinically and genetically heterogeneous group of disorders characterized by variable degrees of progressive muscle degeneration and weakness. There is a wide variability in the age of onset, symptoms and rate of progression in subtypes of these disorders. Herein, we present the results of our study conducted to identify the pathogenic genetic variation involved in our patient affected by rigid spine muscular dystrophy. CASE PRESENTATION: A 14-year-old boy, product of a first-cousin marriage, was enrolled in our study with failure to thrive, fatigue, muscular dystrophy, generalized muscular atrophy, kyphoscoliosis, and flexion contracture of the knees and elbows. Whole-exome sequencing (WES) was carried out on the DNA of the patient to investigate all coding regions and uncovered a novel, homozygous missense mutation in SEPN1 gene (c. 1379 C > T, p.Ser460Phe). This mutation has not been reported before in different public variant databases and also our database (BayanGene), so it is classified as a variation of unknown significance (VUS). Subsequently, it was confirmed that the novel variation was homozygous in our patient and heterozygous in his parents. Different bioinformatics tools showed the damaging effects of the variant on protein. Multiple sequence alignment using BLASTP on ExPASy and WebLogo, revealed the conservation of the mutated residue. CONCLUSION: We reported a novel homozygous mutation in SEPN1 gene that expands our understanding of rigid spine muscular dystrophy. Although bioinformatics analyses of results were in favor of the pathogenicity of the mutation, functional studies are needed to establish the pathogenicity of the variant.


Asunto(s)
Predisposición Genética a la Enfermedad , Cuerpos de Mallory/patología , Proteínas Musculares/genética , Distrofias Musculares/genética , Mutación , Escoliosis/genética , Selenoproteínas/genética , Adolescente , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Pruebas Genéticas , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Irán , Masculino , Cuerpos de Mallory/genética , Atrofia Muscular , Distrofias Musculares/fisiopatología , Mutación Missense , Linaje , Escoliosis/fisiopatología , Alineación de Secuencia
9.
Front Pediatr ; 5: 169, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848724

RESUMEN

Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene (ERCC6), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

10.
BMC Med Genet ; 18(1): 49, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28468610

RESUMEN

BACKGROUND: Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). CASE PRESENTATION: Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. CONCLUSIONS: Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.


Asunto(s)
Genes Recesivos , Linfohistiocitosis Hemofagocítica/genética , Mutación Missense , Perforina/genética , Niño , Femenino , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA