Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharmacol Toxicol Methods ; 127: 107512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38719163

RESUMEN

The principle of proportionality of the systolic area of the central aortic pressure to stroke volume (SV) has been long known. The aim of the present work was to evaluate an in silico solution derived from this principle for modelling SV (iSV model) in cardiovascular safety pharmacology studies by telemetry. Blood pressure was measured in the abdominal aorta in accordance with standard practice. Central aortic pressure was modelled from the abdominal aortic pressure waveform using the N-point moving average (NPMA) method for beat-to-beat estimation of SV. First, the iSV was compared to the SV measured by ultrasonic flowmetry in the ascending aorta (uSV) after various pharmacological challenges in beagle dogs anaesthetised with etomidate/fentanyl. The iSV showed minimal bias (0.2 mL i.e. 2%) and excellent agreement with uSV. Then, previous telemetry studies including reference vasoactive and inotropic compounds were retrospectively reanalysed to model drug effects on stroke volume (iSV), cardiac output (iCO) and systemic vascular resistance (iSVR). Among them, the examples of nicardipine and isoprenaline highlight risks of erroneous or biased estimation of drug effects from the abdominal aortic pressure due to pulse pressure amplification. Furthermore, the examples of verapamil, quinidine and moxifloxacin show that iSV, iCO and iSVR are earlier biomarkers than blood pressure itself for predicting drug effect on blood pressure. This in silico modelling approach included in vivo telemetry safety pharmacology studies can be considered as a New Approach Methodology (NAM) that provides valuable additional information and contribute to improving non-clinical translational research to the clinic.


Asunto(s)
Gasto Cardíaco , Simulación por Computador , Volumen Sistólico , Telemetría , Resistencia Vascular , Animales , Perros , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/fisiología , Resistencia Vascular/efectos de los fármacos , Telemetría/métodos , Gasto Cardíaco/efectos de los fármacos , Gasto Cardíaco/fisiología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Masculino
2.
J Pharmacol Toxicol Methods ; 121: 107268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37146838

RESUMEN

Central nervous (CNS) and respiratory systems are routinely investigated in safety pharmacology core battery studies. For small molecules, the assessment of both vital organ systems is frequently done in rats in two distinct studies. With the advent of a miniaturized technology of jacketed external telemetry for rats (DECRO system), the simultaneous assessment of modified Irwin's or functional observational battery (FOB) test and respiratory (Resp) studies has become possible within a single study. Therefore, the objectives of this study were to perform the FOB and the Resp studies simultaneously in pair-housed rats fitted with jacketed telemetry, and to assess the feasibility and the outcome of this combination in control, baclofen, caffeine, and clonidine treated groups, i.e., with three agents having both respiratory and CNS effects. Our results provided evidence that performing both Resp and FOB assessment simultaneously in the same rat was feasible and the outcome was successful. The expected CNS and respiratory effects of the 3 reference compounds were accurately captured in each assay confirming the results' relevance. In addition, heart rate and activity level were recorded as additional parameters making this design as an enhanced approach for nonclinical safety assessment in rats. This work provides clear evidence that the "3Rs" principles can be effectively applied in core battery safety pharmacology studies while remaining in compliance with worldwide regulatory guidelines. Both reduction in animal use and refinements in procedures are demonstrated with this model.


Asunto(s)
Sistema Respiratorio , Telemetría , Ratas , Animales , Telemetría/métodos , Frecuencia Cardíaca
3.
J Pharmacol Toxicol Methods ; 117: 107195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35779850

RESUMEN

Respiratory and cardiovascular systems are among the vital organ systems that should be studied in safety pharmacology core battery test. Non-invasive jacketed external telemetry technology that enables concomitant monitoring of both systems has been available and used widely for non-rodent species. Recently, the DECRO system, a miniaturized technology system in line with the "3Rs" principles, has been developed to provide a similar approach in rats. However, data to evaluate this system in socially-housed rats is lacking. Therefore, the objectives of this study were to determine the tolerability and the material integrity of this novel solution in pair-housed rats in two conditions: i) in a single session of 22 h simulating a stand-alone safety pharmacology study design, and ii) in three repeated sessions of 22 h each, simulating the inclusion of safety pharmacology endpoints in a 1-month toxicology study. In both conditions, the GABAB receptor agonist baclofen was used as a reference compound inducing cardiorespiratory changes. Our results provided evidence that this novel solution was well tolerated, the material was resistant to deterioration and that it allowed the accurate recording, in a non-invasive manner, of cardiorespiratory parameters and activity level in freely moving, pair-housed rats in the above two conditions. In addition, the expected respiratory depressant effects of baclofen were recorded. These results pave the way for considering this novel solution as an enhanced approach for nonclinical safety assessment in rats.


Asunto(s)
Baclofeno , Telemetría , Animales , Baclofeno/farmacología , Electrocardiografía/métodos , Ratas , Frecuencia Respiratoria , Sistema Respiratorio , Telemetría/métodos
4.
Br J Pharmacol ; 179(18): 4549-4562, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35751378

RESUMEN

BACKGROUND AND PURPOSE: HERG blocking drugs known for their propensity to trigger Torsades de Pointes (TdP) were reported to induce a sympatho-vagal coactivation and to enhance High Frequency heart rate (HFHR) and QT oscillations (HFQT) in telemetric data. The present work aimed to characterize the underlying mechanism(s) leading to these autonomic changes. EXPERIMENTAL APPROACH: Effects of 15 torsadogenic hERG blocking drugs (astemizole, chlorpromazine, cisapride, droperidol, ibutilide, dofetilide, haloperidol, moxifloxacin, pimozide, quinidine, risperidone, sotalol, sertindole, terfenadine, and thioridazine) were assessed by telemetry in beagle dogs. Haemodynamic effects on diastolic and systolic arterial pressure were analysed from the first doses causing QTc prolongation and/or HFQT oscillations enhancement. Autonomic control changes were analysed using the high frequency autonomic modulation (HFAM) model. KEY RESULTS: Except for moxifloxacin and quinidine, all torsadogenic hERG blockers induced parasympathetic activation or sympatho-vagal coactivation combined with enhancement of HFQT oscillations. These autonomic effects result from reflex compensatory mechanisms in response to mild haemodynamic side effects. These haemodynamic mechanisms were characterized by transient HR acceleration during HF oscillations. A phenomenon of concealed QT prolongation was unmasked for several torsadogenic hERG blockers under ß-adrenoceptor blockade with atenolol. Resulting enhancement of HFQT oscillations was shown to contribute directly to triggering dofetilide-induced ventricular arrhythmias. CONCLUSION AND IMPLICATIONS: This work supports for the first time a contribution of haemodynamic side properties to ventricular arrhythmias triggered by torsadogenic hERG blocking drugs. These haemodynamic side effects may constitute a second component of their arrhythmic profile, acting as a trigger alongside their intrinsic arrhythmogenic electrophysiological properties.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Síndrome de QT Prolongado , Torsades de Pointes , Animales , Arritmias Cardíacas/inducido químicamente , Perros , Electrocardiografía , Canales de Potasio Éter-A-Go-Go/fisiología , Frecuencia Cardíaca , Síndrome de QT Prolongado/inducido químicamente , Moxifloxacino/efectos adversos , Quinidina , Reflejo , Torsades de Pointes/inducido químicamente
5.
Elife ; 102021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34028353

RESUMEN

While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers, and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e. performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use.


Asunto(s)
Investigación Biomédica/normas , Evaluación Preclínica de Medicamentos/normas , Proyectos de Investigación/normas , Conducta Cooperativa , Exactitud de los Datos , Difusión de Innovaciones , Europa (Continente) , Humanos , Comunicación Interdisciplinaria , Control de Calidad , Mejoramiento de la Calidad , Participación de los Interesados
6.
PLoS One ; 8(1): e53888, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342033

RESUMEN

Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.


Asunto(s)
Encéfalo/fisiología , Encéfalo/fisiopatología , Cognición , Vivienda para Animales/normas , Plasticidad Neuronal , Estado Epiléptico/patología , Estado Epiléptico/fisiopatología , Adaptación Psicológica/fisiología , Animales , Ansiedad/complicaciones , Peso Corporal , Encéfalo/citología , Encéfalo/patología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/fisiopatología , Ingestión de Alimentos , Conducta Exploratoria/fisiología , Salud , Metabolismo de los Lípidos , Masculino , Neurogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Estándares de Referencia , Reproducibilidad de los Resultados , Restricción Física/psicología , Estado Epiléptico/psicología , Estrés Psicológico/complicaciones , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología , Sinapsis/patología
7.
Proc Natl Acad Sci U S A ; 106(24): 9848-53, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19497871

RESUMEN

Erythropoietin receptor (EpoR) binding mediates neuroprotection by endogenous Epo or by exogenous recombinant human (rh)Epo. The level of EpoR gene expression may determine tissue responsiveness to Epo. Thus, harnessing the neuroprotective power of Epo requires an understanding of the Epo-EpoR system and its regulation. We tested the hypothesis that neuronal expression of EpoR is required to achieve optimal neuroprotection by Epo. The ventral limbic region (VLR) in the rat brain was used because we determined that its neurons express minimal EpoR under basal conditions, and they are highly sensitive to excitotoxic damage, such as occurs with pilocarpine-induced status epilepticus (Pilo-SE). We report that (i) EpoR expression is significantly elevated in nearly all VLR neurons when rats are subjected to 3 moderate hypoxic exposures, with each separated by a 4-day interval; (ii) synergistic induction of EpoR expression is achieved in the dorsal hippocampus and neocortex by the combination of hypoxia and exposure to an enriched environment, with minimal increased expression by either treatment alone; and (iii) rhEpo administered after Pilo-SE cannot rescue neurons in the VLR, unless neuronal induction of EpoR is elicited by hypoxia before Pilo-SE. This study thus demonstrates using environmental manipulations in normal rodents, the strict requirement for induction of EpoR expression in brain neurons to achieve optimal neuroprotection. Our results indicate that regulation of EpoR gene expression may facilitate the neuroprotective potential of rhEpo.


Asunto(s)
Eritropoyetina/farmacología , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Receptores de Eritropoyetina/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Eritropoyetina/metabolismo , Regulación de la Expresión Génica , Hipoxia/metabolismo , Masculino , Pilocarpina/farmacología , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/fisiología , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología
8.
J Comp Neurol ; 514(4): 403-14, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19330822

RESUMEN

Brain effects of erythropoietin (Epo) are proposed to involve a heteromeric receptor comprising the classical Epo receptor (Epo-R) and the common beta chain (betac). However, data documenting the pattern of betac gene expression in the healthy brain, in comparison with that of the Epo-R gene, are still lacking. The present study is the first to investigate at the same time betac, Epo-R, and Epo gene expression within different rat brain areas throughout the life span, from neonatal to elderly stages, using quantitative RT-PCR for transcripts. Corresponding proteins were localized by using immunohistochemistry. We demonstrate that the betac transcript level does not correlate with that of Epo-R or Epo, whereas the Epo-R transcript level strongly correlates with that of Epo throughout the life span in all brain structures analyzed. Both Epo and Epo-R were detected primarily in neurons. In the hippocampus, the greatest Epo-R mRNA levels were measured during the early postnatal period and in middle-aged rats, associated with an intense neuronal immunolabeling. Conversely, betac protein was barely detectable in the brain at all ages, even in neurons expressing high levels of Epo-R. Finally, betac transcript could not be detected in PC12 cells, even after nerve growth factor-induced neuritogenesis, which is a condition that dramatically enhances Epo-R transcript level. Altogether, our data suggest that most neurons are likely to express high levels of Epo-R but low, if not null, levels of betac. Given that Epo protects extended populations of neurons after injury, a yet-to-be-identified receptor heterocomplex including Epo-R may exist in the large population of brain neurons that does not express betac.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Eritropoyetina/metabolismo , Receptores de Eritropoyetina/metabolismo , Envejecimiento/metabolismo , Análisis de Varianza , Animales , Astrocitos/metabolismo , Expresión Génica , Inmunohistoquímica , Masculino , Microglía/metabolismo , Neuritas/metabolismo , Neuronas/metabolismo , Células PC12 , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
J Neurochem ; 105(1): 34-45, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17996027

RESUMEN

Heparanase is an endo-beta-d-glucuronidase which specifically cleaves extracellular and cell surface heparan sulphates at intra-chain sites. Its enzymatic activity is strongly implicated in cell dissemination associated with tumor metastasis and inflammation. Indeed, heparanase gene is expressed in various tumors and its over-expression is correlated with increased tumor vascularity and metastatic potential of tumor cells. However, heparanase expression in non-invasive and non-immune tissue, including brain, has received less attention. Using RT-qPCR, western blot and histological analysis, we demonstrate in the adult rat that heparanase transcript is differentially expressed according to brain area, and that heparanase protein is mainly detected in neurons. Furthermore, we provide evidence that heparanase transcript and protein reach their greatest levels at early postnatal stages, in particular within the neocortex characterized by intensive structural plasticity. Using the in vitro model of PC12-induced neuronal differentiation, we suggest that developmental regulation of heparanase may coincide with axonal and dendritic pathfinding. At adulthood, we demonstrate that the increased heparanase transcript level correlates in the hippocampus with enhanced angiogenesis following repeated hypoxia exposures. Taken together, our results emphasize the potential importance of heparanase in brain homeostasis, both during development and adaptative responses to severe environmental challenges.


Asunto(s)
Encéfalo/enzimología , Regulación del Desarrollo de la Expresión Génica/fisiología , Glucuronidasa/metabolismo , Hipoxia/complicaciones , Neovascularización Patológica/etiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Antígenos CD34/metabolismo , Encéfalo/crecimiento & desarrollo , Bromodesoxiuridina/metabolismo , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ambiente , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glucuronidasa/genética , Precondicionamiento Isquémico/métodos , Masculino , Neovascularización Patológica/patología , Factor de Crecimiento Nervioso/farmacología , Células PC12 , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...