Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930253

RESUMEN

Cow dung (CD) is a material that has been used for millennia by humanity as a stabilizer in earth building techniques in vernacular architecture. However, this stabilization has been little addressed scientifically. In this study, the effect of CD additions was assessed on earth mortars produced with one type of earth from Brazil and two other types from Portugal (from Monsaraz and Caparica). The effect of two volumetric proportions of CD additions were assessed: 10% and 20% of earth + sand. The German standard DIN 18947 was used to perform the physical and mechanical tests, and classify the mortars. In comparison to the reference mortars without CD, the additions reduced linear shrinkage and cracking. An increase in flexural and compressive strengths was not observed only in mortars produced with earth from Monsaraz. In mortars produced with the earth from Caparica, the addition of 10% of CD increased flexural strength by 15% and compressive strength by 34%. For mortars produced with the earth from Brazil, the addition of 10% of CD increased these mechanical strengths by 40%. The increase in adhesive strength and water resistance promoted by the CD additions was observed in mortars produced with all three types of earth. Applied on ceramic brick, the proportion of 10% of CD increased the adherence by 100% for the three types of earth. Applied on adobe, the same proportion of CD also increased it more than 50%. For the water immersion test, the CD additions made possible for the mortar specimens not to disintegrate after a 30 min immersion, with the 20% proportion being more efficient. The effects of the CD on mechanical performance, including adhesion, were more significant on the tropical earth mortars but the effects on water resistance were more significant on the Mediterranean earthen mortars. CD has shown its positive effects and potential for both tropical and Mediterranean earthen plasters and renders tested, justifying being further studied as an eco-efficient bio-stabilizer.

2.
Environ Sci Pollut Res Int ; 30(41): 93952-93969, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37518845

RESUMEN

The characteristics and potential for carbon dioxide capture and storage of the fifteenth-century lime mortar samples from City Palace, Udaipur, India, were studied. Physiochemical analysis followed by XRD, FTIR, TGA-DSC, and FE-SEM was performed. The findings demonstrate that calcium-rich eminently hydraulic mortars were used with a binder/aggregate (B/Ag) ratio of about 1:2.8±0.42. Mineralogy identified load-bearing phases: aragonite, vaterite, and calcite with 45±5% clay minerals. Absorption and stretching bands detected by FTIR at 1631 cm-1 and 2954 cm-1 corroborate the inclusion of plant organics. All samples showed aragonite around 870 cm-1, which can be traced back to bonded CO2 and the subsequent carbonation throughout the age of the structure. TGA-DSC validated XRD and FE-SEM analysis exhibited 18.66±3.40% weight loss at >600 °C, indicating calcite decomposition and CO2 release with CO2/H2O ratio of 3.31 to 3.66. From the historic example, a debate has been sparked about using lime mortars in contemporary construction to mitigate the carbon footprint with inherent attributes.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Dióxido de Carbono/química , Carbonato de Calcio/química , Tecnología , Materiales de Construcción/análisis
3.
Materials (Basel) ; 17(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38204055

RESUMEN

Increasing concerns about global warming and its impact on the environment reinforce the need for new materials and technologies. Additive manufacturing has become more relevant due to its potential to build sustainable and more energy-efficient constructions. However, the materials employed within the technology are not yet fully sustainable. Researchers employing clay as the main binder have found that, besides protecting the environment, it benefits passive control of indoor temperature and relative humidity and contributes to comfort. The mortar design as well as the necessary technological adaptations for the 3D printing of earth mortars are addressed. From a material perspective, this paper reviewed and analyzed the recent developments in additive manufacturing of clay-based mortars, highlighting the main gaps and providing recommendations for future developments in this field.

4.
Materials (Basel) ; 15(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35161125

RESUMEN

Two eco-friendly healing bioproducts generated from microbial mixed cultures (MMC) for the production of polyhydroxyalkanoates (PHA) were used as surface treatments, with two residual materials used as the substrates, namely crude glycerol and pinewood bio-oil. Their ability to improve the durability of concrete samples containing recycled aggregates was assessed. To determine this protective capacity, 180 samples were analyzed using different tests, such as water penetration under pressure, capillary absorption, freeze-thaw and water droplet absorption test. Three types of conditions were used: outdoor-indoor exposure, re-application of biopolymers and application in vertical exposure conditions. The results showed reductions of up to 50% in the water penetration test and a delay in the water droplet absorption test of up to 150 times relative to the reference. The surface application of these bioproducts significantly reduced the degree of water penetration in recycled concrete, increasing its useful lifespan and proving to be a promising treatment for protecting concrete surfaces.

5.
Materials (Basel) ; 14(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772095

RESUMEN

One approach to tackle the problems created by the vast amounts of construction and demolition waste (CDW) generated worldwide while at the same time lengthening concrete durability and service life is to foster the use of recycled aggregate (RA) rather than natural aggregate (NA). This article discusses the use of polyhydroxyalkanoates (PHAs)-producing mixed microbial cultures (MMCs) to treat the surface of recycled concrete with a view to increase its resistance to water-mediated deterioration. The microorganisms were cultured in a minimal medium using waste pinewood bio-oil as a carbon source. Post-application variations in substrate permeability were determined with the water drop absorption and penetration by water under pressure tests. The significant reduction in water absorption recorded reveals that this bioproduct is a promising surface treatment for recycled concrete.

6.
Materials (Basel) ; 14(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921807

RESUMEN

The large increase in the world population has resulted in a very large amount of construction waste, as well as a large amount of waste glycerol from transesterification reactions of acyl glycerides from oils and fats, in particular from the production of biodiesel. Only a limited percentage of these two residues are recycled, which generates a large management problem worldwide. For that reason, in this study, we used crude glycerol as a carbon source to cultivate polyhydroxyalkanoates (PHA)-producing mixed microbial cultures (MMC). Two bioproducts derived from these cultures were applied on the surface of concrete with recycled aggregate to create a protective layer. To evaluate the effect of the treatments, tests of water absorption by capillarity and under low pressure with Karsten tubes were performed. Furthermore, SEM-EDS analysis showed the physical barrier caused by biotreatments that produced a reduction on capillarity water absorption of up to 20% and improved the impermeability of recycled concrete against the penetration of water under pressure up to 2.7 times relative to the reference. Therefore, this bioproduct shown to be a promising treatment to protect against penetration of water to concrete surfaces increasing its durability and useful life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...