Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 26(2): 22, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31912427

RESUMEN

The Tn antigen is an epitope containing N-acetyl-D-galactosamine present in the extracellular matrix of some carcinoma cells in humans, and it is often used as a biomarker. Lectins are proteins capable of binding to carbohydrates and can be used as a molecular tool to recognize antigens and to differentiate cancer cells from normal cells. In this context, the present work aimed to characterize the interaction of Vatairea guianensis seed lectin with N-acetyl-D-galactosamine and the Tn antigen by molecular dynamics and molecular mechanics/Poisson-Boltzmann solvent-accessible surface area analysis. This study revealed new interacting residues not previously identified in static analysis of the three-dimensional structures of Vatairea lectins, as well as the configuration taken by the carbohydrate recognition domain, as it interacts with each ligand. During the molecular dynamics simulations, Vatairea guianensis lectin was able to bind stably to Tn antigen, which, as seen previously for other lectins, enables its use in cancer research, diagnosis, and therapy. This work further demonstrates the efficiency of bioinformatics in lectinology.


Asunto(s)
Fabaceae/química , Simulación de Dinámica Molecular , Lectinas de Plantas/química , Humanos , Neoplasias , Dominios Proteicos
2.
J Mol Model ; 24(9): 251, 2018 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-30145634

RESUMEN

The Arachis genus belongs to the Dalbergieae tribe, a group of plants that show promising potential novel lectins. Three lectins of the well-known Arachis hypogaea have already been purified, while lectins from related species are still unknown. Genomes of two closely related species, Arachis duranensis and Arachis ipaensis, were recently sequenced. Therefore, this study aimed to establish the three-dimensional structure of Arachis duranensis lectin (ADL) and Arachis ipaensis lectin (AIL) by homology modeling, test their activity against mannosides, and perform molecular dynamics (MD) simulations on these two proteins, both unligated and interacting with mannose or α-methyl-D-mannoside. The fold obtained for the molecular models agrees with data obtained from previous leguminous lectins, showing a conserved jelly roll motif. Docking scores indicate that these lectins have different theoretical binding energy with monosaccharides, disaccharides, and high-mannose glycans. MD simulations revealed that these proteins are α-methyl-D-mannoside-specific, having less stable interactions with mannose. This study thus serves as a guide for further research on lectins of the Arachis genus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...